欢迎来到天天文库
浏览记录
ID:62140751
大小:3.29 MB
页数:59页
时间:2021-04-19
《最新新课标人教版六年级数学下册解比例课件教学讲义ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课标人教版六年级数学下册解比例课件1、什么叫做比例?表示两个比相等的式子叫做比例。2、什么叫做比例的基本性质?在比例里,两个外项的积等于两个内项的积。3、怎样判断两个比是否成比例?应用比例的意义或者比例的基本性质。温习旧知4、应用比例的基本性质,判断下面哪组中的两个比可以组成比例.6∶10和9∶1520∶5和4∶15∶1和6∶2()()()×√√根据比例的基本性质,如果已知比例中的任何三项,就可以求出另外一个未知项。求比例中的未知项,叫做解比例。你知道什么叫解比例吗?如果不知道在书上94页自己找一找,解比例是根据哪个知识解决的?必须知道比例的几项?什么是解比例?解:
2、=6×2.51.541=10=6×2.51.5解比例:=1.52.563根据比例的基本性质,我们可以把这个比例转化成一般的﹙﹚。总结一下解比例的方法:应用比例的基本性质,把比例转化成一般方程,然后再求出解。艾菲尔铁塔高320米,它不仅是一座吸引游人观光的纪念塔,还是巴黎这座具有悠久历史的美丽城市的象征。应用比例解决实际问题法国巴黎的埃菲尔铁塔高320米,北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10。这座模型高多少米?解:设这座模型高x米。X:320=1:1010X=320×1X=320×110X=32答:这座模型高32米。2自学提示:题
3、中的1:10,1是谁的?10是谁的?总结一下这种题的解题方法:1、根据问题设x。2、根据比例的意义列出比例式。3、根据比例的基本性质把比例转化成方程。4、解方程。加油啊!做一做知识检测解比例:X︰10=︰解:X=10×X=X=10×÷141313141413712解比例:8︰12=X︰45解:12X=8×45X=30X=———8×4512解比例:—=—122.43X解:12X=()×()X=X=()2.432.430.6()×()()12依照下面的条件列出比例,并且解比例。解:=等号左端的比是1.5∶,等号右端比的前项和后项分别是3.6和4.8。∶=1.53.6∶4.
4、8=3.6×1.54.8×1.54.83.64310.5=2依照下面的条件列出比例,并且解比例。X和最小的质数比等于一位数最大合数的倒数和最小合数比。早上9点钟时,木棒的高度与它的影子的长度比是5:4,如果这时测得学校旗杆的影长为12米,那么学校旗杆的实际高度是多少米?5cm4cm根据木棒高度:木棒影子长度=旗杆高度:旗杆影子长度解:设学校旗杆的实际高度是x米。答:学校旗杆的实际高度是15米。我校有故事书90本,故事书是科技书的,科技书有多少本?(列个比例解出来)模型高度:实际高度=1:10():()=1:1019.6x小结:如果要确定一个比例中的两项,答案并不唯一。
5、会有很多答案。?全课总结通过这节课的学习,你有哪些收获?完成本节课的学习目标了吗?下课啦、再见!§2.6异方差性Heteroskedasticity一、异方差性的概念二、实际经济问题中的异方差性三、异方差性的后果四、异方差性的检验五、异方差性的估计回归分析,是在对线性回归模型提出若干基本假设的条件下,应用普通最小二乘法得到了无偏的、有效的参数估计量。但是,在实际的计量经济学问题中,完全满足这些基本假设的情况并不多见。如果违背了某一项基本假设,那么应用普通最小二乘法估计模型就不能得到无偏的、有效的参数估计量,OLS法失效,这就需要发展新的方法估计模型。如果随机误差项序列
6、不具有同方差性,即出现异方差性。说明一、异方差的概念1、异方差的概念即对于不同的样本点,随机误差项的方差不再是常数,则认为出现了异方差性。2、异方差的类型同方差性假定的意义是指每个i围绕其零平均值的变差,并不随解释变量X的变化而变化,不论解释变量观测值是大还是小,每个i的方差保持相同,即i2=常数在异方差的情况下,i2已不是常数,它随X的变化而变化,即i2=f(Xi)异方差一般可归结为三种类型:(1)单调递增型:i2随X的增大而增大;(2)单调递减型:i2随X的增大而减小;(3)复杂型:i2与X的变化呈复杂形式。Back二、实际经济问题中的异方差性例1
7、:在截面资料下研究居民家庭的储蓄形为Yi=0+1Xi+iYi和Xi分别为第i个家庭的储蓄额和可支配收入。在该模型中,i的同方差假定往往不符合实际情况。对高收入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律性(如为某一特定目的而储蓄),差异较小。因此,i的方差往往随Xi的增加而增加,呈单调递增型变化。一般情况下:居民收入服从正态分布,处于中等收入组中的人数最多,处于两端收入组中的人数最少。而人数多的组平均数的误差小,人数少的组平均数的误差大。所以样本观测值的观测误差随着解释变量观测值的增大而先减后增。如果样本观测值的观测误差构成随机误差
此文档下载收益归作者所有