欢迎来到天天文库
浏览记录
ID:62125664
大小:665.00 KB
页数:86页
时间:2021-04-17
《最新年秋八年级上册第11章--小结与复习教学讲义ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018年秋八年级上册第11章--小结与复习学习目标:1.复习本章内容,整理本章知识,形成知识体系,体会研究几何问题的思路和方法.2.进一步发展推理能力,能够有条理地思考、解决问题.学习重点:复习本章内容并运用它们进行有关的计算与证明,构建本章知识结构.腰和底不等的等腰三角形1.三角形的三边关系:2.三角形的分类三角形的两边之和大于第三边,两边之差小于第三边.按边分按角分不等边三角形等腰三角形等边三角形直角三角形锐角三角形钝角三角形要点梳理考点一三角形的三边关系例1已知两条线段的长分别是3cm、8cm,要想拼成一个三
2、角形,且第三条线段a的长为奇数,问第三条线段应取多长?解:由三角形两边之和大于第三边,两边之差小于第三边得8-33、腰三角形的周长为16,其一边长为6,求另两边长.解:由于题中没有指明边长为6的边是底还是腰,∴分两种情况讨论:当6为底边长时,腰长为(16-6)÷2=5,这时另两边长分别为5,5;当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.【变式题】已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12C归纳等腰三角形的底边长不确定时,要分两种情况讨论,还要注意三边是否构成三角形.2.若(a-1)2+4、b-25、=0,则6、以a,b为边长的等腰三角形的周长为.5针对训练考点二三角形中的重要线段例3如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8,∴AC=5.【变式题】在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.解:如图,∵DB为△ABC的中线7、,∴AD=CD,设AD=CD=x,则AB=2x,当x+2x=12,解得x=4.BC+x=15,得BC=11.此时△ABC的三边长为AB=AC=8,BC=11;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的三边长为AB=AC=10,BC=7.无图时,注意分类讨论例4如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×24=8、12,∴S△BCE=S△ABC=×24=12,∵点F是CE的中点,∴S△BEF=S△BCE=×12=6.3.下列四个图形中,线段BE是△ABC的高的是( )归纳三角形的中线分该三角形为面积相等的两部分.针对训练C4.如图,①AD是△ABC的角平分线,则∠_____=∠____=∠_____,②AE是△ABC的中线,则_____=_____=_____,③AF是△ABC的高线,则∠_____=∠_____=90°.BADCADCABCEBEBCAFBAFC考点三有关三角形内、外角的计算例5∠A,∠B,∠C是△ABC的9、三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.解:(1)由∠C=54°知∠A+∠B=180°-54°=126°①,又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55°;(2)设∠A=2x,∠B=3x,∠C=4x,则2x+3x+4x=180°,解得x=20°,∴∠A=40°,∠B=60°,∠C=80°.若题中没有给出任意角的度数,仅给出数量关系,常用方程思想设未知数列方程求解.例6如图,在△ABC中,D是BC边上一点,10、∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.解:设∠1=∠2=x,则∠4=∠3=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°,所以∠3=∠4=78°,∠DAC=180°-∠3-∠4=24°.归纳5.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=.针对训练6
3、腰三角形的周长为16,其一边长为6,求另两边长.解:由于题中没有指明边长为6的边是底还是腰,∴分两种情况讨论:当6为底边长时,腰长为(16-6)÷2=5,这时另两边长分别为5,5;当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.【变式题】已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12C归纳等腰三角形的底边长不确定时,要分两种情况讨论,还要注意三边是否构成三角形.2.若(a-1)2+
4、b-2
5、=0,则
6、以a,b为边长的等腰三角形的周长为.5针对训练考点二三角形中的重要线段例3如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8,∴AC=5.【变式题】在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.解:如图,∵DB为△ABC的中线
7、,∴AD=CD,设AD=CD=x,则AB=2x,当x+2x=12,解得x=4.BC+x=15,得BC=11.此时△ABC的三边长为AB=AC=8,BC=11;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的三边长为AB=AC=10,BC=7.无图时,注意分类讨论例4如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×24=
8、12,∴S△BCE=S△ABC=×24=12,∵点F是CE的中点,∴S△BEF=S△BCE=×12=6.3.下列四个图形中,线段BE是△ABC的高的是( )归纳三角形的中线分该三角形为面积相等的两部分.针对训练C4.如图,①AD是△ABC的角平分线,则∠_____=∠____=∠_____,②AE是△ABC的中线,则_____=_____=_____,③AF是△ABC的高线,则∠_____=∠_____=90°.BADCADCABCEBEBCAFBAFC考点三有关三角形内、外角的计算例5∠A,∠B,∠C是△ABC的
9、三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.解:(1)由∠C=54°知∠A+∠B=180°-54°=126°①,又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55°;(2)设∠A=2x,∠B=3x,∠C=4x,则2x+3x+4x=180°,解得x=20°,∴∠A=40°,∠B=60°,∠C=80°.若题中没有给出任意角的度数,仅给出数量关系,常用方程思想设未知数列方程求解.例6如图,在△ABC中,D是BC边上一点,
10、∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.解:设∠1=∠2=x,则∠4=∠3=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°,所以∠3=∠4=78°,∠DAC=180°-∠3-∠4=24°.归纳5.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=.针对训练6
此文档下载收益归作者所有