欢迎来到天天文库
浏览记录
ID:62063465
大小:1.21 MB
页数:20页
时间:2021-04-14
《最新沪科版18.1勾股定理(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、历史因你而改变学习因你而精彩第十八章勾股定理18.1勾股定理(一)星期日老师带领八(3)全体学生去凌峰山风景区游玩,同学们看到山势险峻,查看景区示意图得知:凌峰山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,,请问缆车路线AB长应为多少?问题情境看一看相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学们,我们也来观察一下图案,看看你能发现什么?数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?直角三
2、角形三边有什么关系?SA+SB=SC两直边的平方和等于斜边的平方ABCABCABC(图中每个小方格代表一个单位面积)图1图2探究一:等腰直角三角形三边关系A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1图299ABCABC(图中每个小方格代表一个单位面积)图1图2分“割”成若干个直角边为整数的三角形(单位面积)ABCABC(图中每个小方格代表一个单位面积)图1图2SA+SB=SCA的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图19918图2A、B、C面积关系直角三角形三边关系448两直角边的平方和等于斜边
3、的平方ABC图3ABC图4分割成若干个直角边为整数的三角形(单位面积)一般的直角三角形三边关系探究二:ABCacbSA+SB=SC如果直角三角形的两条直角边长分别是a、b,斜边长为c.猜想:两直角边a、b与斜边c之间的关系?a2+b2=c2结论:直角三角形中,两条直角边的平方和,等于斜边的平方.此结论被称为“勾股定理”.在Rt△ABC中,∠C=900,边BC、AC、AB所对应的边分别为a、b、c则存在下列关系,结论:直角三角形中,两条直角边的平方和,等于斜边的平方.a2+b2=c2勾股弦cabBCA如果直角三角形的两直角边分别为a,b
4、,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理∵∠C=90°∴a2+b2=c2cabBCA两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯
5、学派,他们发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票.我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中.分析:已知△ABC中,,AC=900米,BC=1200米,求斜边AB的长.例1.星期日老师带领八(3)全体学生去凌峰山风景区游玩,同学们看到山势险峻,查看景区示意图得知:凌峰山主峰高约为900米,如
6、图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,,请问缆车路线AB长应为多少?勾股定理的运用一已知直角三角形的任意两条边长,求第三条边长.a2=c2-b2b2=c2-a2c2=a2+b2在直角三角形ABC中,∠C=900,∠A、∠B、∠C所对的边分别为a、b、c(1)已知a=1,b=2,求c(2)已知a=10,c=15,求b小试牛刀ACBbac例2:将长为5米的梯子AC斜靠在墙上,BC长为2米,求梯子上端A到墙的底端B的距离.CAB解:在Rt△ABC中,∠ABC=90°∵BC=2,
7、AC=5∴AB2=AC²-BC²=5²-2²=21∴AB=(米)(舍去负值)做一做:P62540026xP的面积=______________X=_________225BACAB=__________AC=__________BC=__________251520求下列图中表示边的未知数x、y、z的值.①81144xyz②③做一做625576144169X=15Y=5Z=7比一比看谁算得又快又准!求下列直角三角形中未知边的长x:可用勾股定理建立方程.勾股定理运用二:8x171620x125x做一做X=15X=12X=131、本节课我
8、们经历了怎样的过程?经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程.2、本节课我们学到了什么?通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方
此文档下载收益归作者所有