资源描述:
《最新4.4--第2课时-单个一次函数图象的应用(1)课件ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.4--第2课时-单个一次函数图象的应用(1)学习目标1.掌握单个一次函数图象的应用.(重点)2.了解一次函数与一元一次方程的关系.(难点)导入新课回顾与思考1.由一次函数的图象可确定k和b的符号;2.由一次函数的图象可估计函数的变化趋势;3.可直接观察出:x与y的对应值;4.由一次函数的图象与y轴的交点的坐标可确定b值,从而确定一次函数的图象的表达式.从一次函数图象可获得哪些信息?例1:某种摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示:0100200300400500x/千米y/升108642典例精析01002
2、00300400500x/千米y/升108642(1)油箱最多可储油多少升?解:当x=0时,y=10.因此,油箱最多可储油10L.根据图象回答下列问题:0100200300400500x/千米y/升108642(2)一箱汽油可供摩托车行驶多少千米?解:当y=0时,x=500,因此一箱汽油可供摩托车行驶500km.0100200300400500x/千米y/升108642(3)摩托车每行驶100千米消耗多少升?解:x从100增加到200时,y从8减少到6,减少了2,因此摩托车每行驶100千米消耗2升汽油.0100200300400500x/千米y/升108
3、642(4)油箱中的剩余油量小于1升时将自动报警.行驶多少千米后,摩托车将自动报警?解:当y=1时,x=450,因此行驶了450千米后,摩托车将自动报警.总结归纳如何解答实际情景函数图象的信息?1.理解横纵坐标分别表示的的实际意义;3.利用数形结合的思想:将“数”转化为“形”由“形”定“数”2.分析已知条件,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;原图应用与延伸例1中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩托车行驶路程x(千米)之间的关系变为图1:试问:⑴加油站在多少千米处?加油多少升?40
4、0千米6-2=4升(,6)图1加油后的图象(,2)应用与延伸试问:⑵加油前每100千米耗油多少升?加油后每100千米耗油多少升?(400,6)图1加油后的图象(400,2)(600,2)解:加油前,摩托车每行驶100千米消耗2升汽油.加油后,x从400增加到600时,油从6减少到2升,200千米用了4升,因此摩托车每行驶100千米消耗2升汽油.应用与延伸试问:⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?图1加油后的图象答:够用.理由:由图象上观察的:400千米处设加油站,到700米处油用完,说明所加油最多可供行驶300千米.96312
5、15182124Y/cml2468101214t/天某植物t天后的高度为ycm,图中的l反映了y与t之间的关系,根据图象回答下列问题:(1)植物刚栽的时候多高?(2)3天后该植物多高?(3)几天后该植物高度可达21cm?9cm12cm12天(3,12)(12,21)练一练议一议:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?1.从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解.2.从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解.2013
6、123-1-2-3-1-2-3xy一次函数与一元一次方程二1.直线y=2x+20与x轴交点坐标为(____,_____),这说明方程2x+20=0的解是x=_____.-100-10练一练2.若方程kx+b=0的解是x=5,则直线y=kx+b与x轴交点坐标为(____,_____).50求一元一次方程kx+b=0的解.一次函数与一元一次方程的关系一次函数y=kx+b中y=0时x的值.从“函数值”看求一元一次方程kx+b=0的解.求直线y=kx+b与x轴交点的横坐标.从“函数图象”看归纳总结例2一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,
7、根据图象信息可求得关于x的方程kx+b=0的解为( )A.x=-1B.x=2C.x=0D.x=3【解析】由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,故一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1.A方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.1.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y元与行李质量x千克的关系如图:(1)旅客最多可免费携带多少千克行李?⑵超过30千克后,每千克需付
8、多少元?3030千克0.2元当堂练习2.全国每年都有大量土地被沙漠吞没,改造沙漠