欢迎来到天天文库
浏览记录
ID:62024531
大小:2.24 MB
页数:17页
时间:2021-04-14
《2021届高考数学(理)二轮高频考点复习解密23 坐标系与参数方程(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、解密23坐标系与参数方程1.(2020·新课标Ⅰ)在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标.【答案】(1)曲线表示以坐标原点为圆心,半径为1的圆;(2).【解析】(1)当时,曲线的参数方程为为参数),两式平方相加得,所以曲线表示以坐标原点为圆心,半径为1的圆;(2)当时,曲线的参数方程为为参数),所以,曲线的参数方程化为为参数),两式相加得曲线方程为,得,平方得,曲线的极坐标方程为,曲线直角坐标方程为,联立方程,整理得,解得
2、或(舍去),,公共点的直角坐标为.2.(2020·新课标Ⅱ)已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.【答案】(1);;(2).【解析】(1)由得的普通方程为:;由得:,两式作差可得的普通方程为:.(2)由得:,即;设所求圆圆心的直角坐标为,其中,则,解得:,所求圆的半径,所求圆的直角坐标方程为:,即,所求圆的极坐标方程为.3.(2020·新课标Ⅲ)
3、在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A、B两点.(1)求;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.【答案】(1)(2)【解析】(1)令,则,解得或(舍),则,即.令,则,解得或(舍),则,即;(2)由(1)可知,则直线的方程为,即.由可得,直线的极坐标方程为.4.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C和l的直角坐标方程;(2)求C上的点到l距
4、离的最小值.【答案】(1);l的直角坐标方程为;(2).【解析】(1)因为,且,所以C的直角坐标方程为.l的直角坐标方程为.(2)由(1)可设C的参数方程为(为参数,).C上的点到l的距离为.当时,取得最小值7,故C上的点到l距离的最小值为.5.【2019年高考全国Ⅱ卷理数】在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【答案】(1),l的极坐标方程为;(2).【解析】(1)因为在C上,当时,.由已知得.设为l上除P的任意一点.在中
5、,,经检验,点在曲线上.所以,l的极坐标方程为.(2)设,在中,即.因为P在线段OM上,且,故的取值范围是.所以,P点轨迹的极坐标方程为.6.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,,的极坐标方程;(2)曲线由,,构成,若点在M上,且,求P的极坐标.【答案】(1)的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)或或或.【解析】(1)由题设可得,弧所在圆的极坐标方程分别为,,.所以的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)设,由题设及
6、(1)知若,则,解得;若,则,解得或;若,则,解得.综上,P的极坐标为或或或.7.【2018年高考全国Ⅰ卷理数】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】(1)的直角坐标方程为.;(2)的方程为.【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或
7、与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.8.【2018年高考全国Ⅱ卷理数】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)曲线的直角坐标方程为,的直角坐标方程为;(2)的斜率为.【解析】(1)曲线的直
8、角坐标方程为.当时,的直角坐标方程为,[来源:学科网]当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①
此文档下载收益归作者所有