欢迎来到天天文库
浏览记录
ID:62006214
大小:378.51 KB
页数:8页
时间:2021-04-11
《四川省泸州市泸县二中教育集团2021届高三上学期泸州市一诊模拟考试数学试题 Word版含答案.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、泸县二中教育集团2018级泸州市一诊模拟考试文科数学试题一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则A.B.C.D.2.下列说法正确的是A.“若,则”的否命题为“若,则”B.“”的否定为“”C.“若,则”的逆否命题为真命题D.“”是“”的必要不充分条件3.用一个平面去截正方体,截面的形状不可能是A.正三角形B.正方形C.正五边形D.正六边形4.已知命题,,命题,,则下列为真命题的是A.B.C.D.5.已知(),则=A.B.C.
2、D.6.已知圆柱的高为1,它的外接球的直径为2,则该圆柱的表面积A.B.C.D.7.如图,设有圆和定点,当从开始在平面上绕匀速旋转(旋转角度不超过)时,它扫过的圆内阴影部分的面积时间的函数,它的图象大致是如图所示的四种情况中的哪一种?A.B.C.D.第8页共8页8.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题,其中是真命题的是A.若m⊂α,n∥α,则m∥n;B.若α∥β,β∥γ,m⊥α,则m⊥γ;C.若α∩β=n,m∥n,m∥α,则m∥β;D.若m∥α,n∥β,m∥n,则
3、α∥β.9.函数f(x)=的值域是A.B.C.D.10.已知f(x)为定义在R上的奇函数,f(x+2)=f(x-2),f(1)=5,则f(19)=A.-5B.0C.4D.511.设,,,则的大小关系是A.B.C.D.12.已知函数,则下列关系不正确的是 A.函数是奇函数B.函数在上单调递减C.是函数的唯一零点D.函数是周期函数二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.若f(x)满足f(2x-1)=x+1,,则f(-1)=________.14.设,角α的终边经过
4、点,那么的值等于________.15.设函数,则满足f(x)<2的x的取值范围_____.16.如图,在正方体中,点在线段上运动,则下列判断中正确的是________.①平面平面②平面③三棱锥的体积不变三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。17.(本小题满分12分)△ABC的内角A,B,C所对边分别为a,b,c,已知.(1)求C;(2)若,求△ABC的面积.第8页共8页18.(本小题
5、满分12分)已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.(1)求实数a,b的值;(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.19.(本小题满分12分)已知函数图象的两条相邻对称轴之间的距离为.(1)求函数图象的对称轴方程;(2)若函数在上的零点为,,求的值.20.(本小题满分12分)如图,已知M,N是平面两侧的点,三棱锥所有棱长是2,,.(1)记过A,M,N的平面为α,求证:平面;(2)求该几何体的体积V.第8页共
6、8页21.(本小题满分12分)已知函数.(1)求函数的单调区间;(2)对于任意,不等式恒成立,求实数的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分)在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,点在上,直线经过点且与直线垂直.(1)求直线的极坐标方程;(2)已知点在曲线上运动(异于点),射线交直线于点,求线段的中点轨迹的极坐标方程.23.选修4-5:不等式选讲(
7、10分)已知函数,.(1)若对任意的,都存在,使得,求实数的取值范围;(2)若对于,有,,求证:.第8页共8页泸县二中教育集团2018级泸州市一诊模拟考试文科数学试题答案一、选择题ACCBACABBADD二、填空题13.114.15.(-4,3)16.①②③三、解答题17.解:(1)因为csinB=bcosC,根据正弦定理得sinCsinB=sinBcosC,又sinB≠0,从而tanC=1,由于0<C<π,所以.(2)根据余弦定理c2=a2+b2-2abcosC,而,,,代入整理得a2-4a-5
8、=0,解得a=5或a=-1(舍去).故△ABC的面积为.18.解:(1)∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b=4① ,f′(x)=3ax2+2bx,则f′(1)=3a+2b,由条件得,即3a+2b=9.②由①②式解得a=1,b=3.(2)f(x)=x3+3x2,f′(x)=3x2+6x,令f'(x)=3x2+6x0得x0或x-2,∴f(x)的单调增区间为(-∞,-2],[0,+∞),减区间为(-2,0).∵函数f(x)在区间[m,m+1]上单调递增,∴[m,
此文档下载收益归作者所有