新版数学知识点总结汇编.docx

新版数学知识点总结汇编.docx

ID:61949552

大小:28.47 KB

页数:10页

时间:2021-04-01

新版数学知识点总结汇编.docx_第1页
新版数学知识点总结汇编.docx_第2页
新版数学知识点总结汇编.docx_第3页
新版数学知识点总结汇编.docx_第4页
新版数学知识点总结汇编.docx_第5页
资源描述:

《新版数学知识点总结汇编.docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、新版数学知识点总结汇编初中数学知识点总结一、基本知识(一)、数与代数1、有理数:正整数、0、负整数、分数、画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:在数轴上,一个数所对应的点与原点的

2、距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。2无理数:无限不循环小数叫无理数平方根:如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。如果一个数x的平方等于a,那么这个数x就叫做a的平方根。一个正数有2个平方根,0的平方根为0,负数没有平方根。求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。立方根:如果一个数x的立方等于a,那么这个数x就叫做a的立方根。正数的立方根是正数、0的立方根是0、负数的立方根是负数。求一个数a的立方根的运算叫开立方

3、,其中a叫做被开方数。实数:实数分有理数和无理数。在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。每一个实数都可以在数轴上的一个点来表示。(二)函数1、概念在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x

4、确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值2、解析式法用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系3、图像法把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法4、一次函数在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中

5、x是自变量,y是因变量。特别的,当b=0时称y是x的正比例函数基本性质:1、在正比例函数时,x与y的商一定(x≠0)2、当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b);当y=0时,一次函数图像与x轴相交于(﹣b/k)k>0时,图象从左到右上升,y随x的增大而增大。k<0,b>0:经过第一、二、四象限k<0,b<0:经过第二、三、四象限k<0,b=0:经过第二、四象限(经过原点)函数的解析式像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,描述函数的常用方法

6、,这种式子叫做函数的解析式函数的图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.提示并不是所有的函数都能同时用三种表示方法表示哦一、正比例函数一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y就叫做x的正比例函数。正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。1.正比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限

7、),K的绝对值越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大.2.当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。自变量x的值增大时,y的值则逐渐减小。特点1:单调性特点2:对称性特点3:正比例特点4:奇函数图像:正比例函数的图像是经过坐标原点和定点两点的一条直线,它的斜率是k,横、纵截距都为0。正比例函数的图像是一条过原点的直线。正比例函数y=kx,当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。求正比例函数解析式:正比例函数求法设该正比例函数的解析式为y=kx,将已知点的坐标代入上式得到

8、k,即可求出正比例函数的解析式。另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。正比例函数图像的作法1.在x允许的范围内取一个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。