资源描述:
《C++算法-8.广度优先搜索.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第八章广度优先搜索广度优先搜索的过程广度优先搜索算法(又称宽度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即⒈从图中的某一顶点V0开始,先访问V0;
2、⒉访问所有与V0相邻接的顶点V1,V2,......,Vt;⒊依次访问与V1,V2,......,Vt相邻接的所有未曾访问过的顶点;⒋循此以往,直至所有的顶点都被访问过为止。这种搜索的次序体现沿层次向横向扩展的趋势,所以称之为广度优先搜索。广度优先搜索算法描述:intBfs(){初始化,初始状态存入队列;队列首指针head=0;尾指针tail=1;do{指针head后移一位,指向待扩展结点;for(inti=1;i<=max;++i)//max为产生子结点的规则数{if(子结点符合条件){tail指针增1,把新结点存入列尾;if(新结点与原已产生结点重复)删去该
3、结点(取消入队,tail减1);elseif(新结点是目标结点)输出并退出;}}}while(head4、费用”不与深度成正比时,第一次找到的解不一定是最优解。4、广度优先搜索的效率还有赖于目标结点所在位置情况,如果目标结点深度处于较深层时,需搜索的结点数基本上以指数增长。下面我们看看怎样用宽度优先搜索来解决八数码问题。例如 图2给出广度优先搜索应用于八数码难题时所生成的搜索树。搜索树上的所有结点都标记它们所对应的状态,每个结点旁边的数字表示结点扩展的顺序。粗线条路径表明求得的一个解。从图中可以看出,扩展第26个结点,总共生成46个结点之后,才求得这个解。此外,直接观察此图表明,不存在有更短走步序列的解。【例1】图4表示的是从城市A到城市H的交通图。从图中可以看出,
5、从城市A到城市H要经过若干个城市。现要找出一条经过城市最少的一条路线。【算法分析】看到这图很容易想到用邻接距阵来表示,0表示能走,1表示不能走。如图。首先想到的是用队列的思想。a数组是存储扩展结点的队列,a[i]记录经过的城市,b[i]记录前趋城市,这样就可以倒推出最短线路。具体过程如下:(1)将城市A入队,队首为0、队尾为1。(2)将队首所指的城市所有可直通的城市入队(如果这个城市在队列中出现过就不入队,可用一布尔数组s[i]来判断),将入队城市的前趋城市保存在b[i]中。然后将队首加1,得到新的队首城市。重复以上步骤,直到搜到城市H时,搜索结束。利用b[i]
6、可倒推出最少城市线路。【参考程序】#include#includeusingnamespacestd;intju[9][9]={{0,0,0,0,0,0,0,0,0},{0,1,0,0,0,1,0,1,1},{0,0,1,1,1,1,0,1,1},{0,0,1,1,0,0,1,1,1},{0,0,1,0,1,1,1,0,1},{0,1,1,0,1,1,1,0,0},{0,0,0,1,1,1,1,1,0},{0,1,1,1,0,0,1,1,0},{0,1,1,1,1,0,0,0,1}};inta[101],b[101];boo
7、ls[9];//初始化intout(intd)//输出过程{cout<8、s[i]==0))//判