eviews上机操作指南

eviews上机操作指南

ID:6178290

大小:2.31 MB

页数:7页

时间:2018-01-05

eviews上机操作指南_第1页
eviews上机操作指南_第2页
eviews上机操作指南_第3页
eviews上机操作指南_第4页
eviews上机操作指南_第5页
资源描述:

《eviews上机操作指南》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Eviews上机操作指南(I)1.数据准备篇(1)建立工作文件:workfileu133建立一个截面工作文件,33表示样本容量workfilea19782007建立一个年度时间序列工作文件,1978、2007分别表示年份的起点和终点(2)导入数据Datayx1x2建立数据表格,将excel数据复制到数据表格在使用该命令时一定要注意与excel表中的数据顺序一致,一般情况下第一列为被解释变量,其余各列为若干解释变量2.绘图篇在eviews中一般可以绘制两种类型的图,序列图与散点图(1)序列图:pl

2、oty可以绘制变量y随时间变化的图当然也可以同时绘制多个变量的序列图,例如plotyx1(2)散点图:scatxy表示两个变量之间的关系3.回归篇在eviews中执行回归的命令为lsycx1x2Y表示被解释变量,c为常数,x1、x2为解释变量列表,在实际操作时y、x1、x2可以换成你指定的名称。此外,log(x1)、x1^2、x1*x2分别表示非线性形式的解释变量。回归后可以使用命令genre=resid提取回归的残差。练习:1.多元线性回归模型的参数估计(对应教材P72-P73)(1)建立工作

3、文件导入数据;(2)观察y~x1、y~x2散点图;(3)构造OLS回归,模型为;(4)提取残差序列,观察残差的统计特征。2.双对数模型的参数估计(对应教材P83-P85)(1)建立工作文件,导入数据;(2)分别绘制x、q、p0、p1的序列图;(3)绘制log(q)对log(x)的散点图;(4)构造OLS回归,模型为。3.半对数模型的参数估计(对应教学辅助材料7例子2),根据辅助材料的结果写出相关命令。log(salary)模型1模型2模型3log(sales)log(mktval)profmar

4、gceotencomten截距R2调整R2残差平方和4.异方差检验与修正进行异方差检验首先要估计原始回归,然后提取残差。例如利用excel表格中“异方差-1”的数据,估计模型结果为:(1)图示检验主要通过解释变量与残差平方的散点图进行判断,相应的命令为:Scatx1e^2划线部分可以替代成任意的解释变量。(2)White检验在Eviews中可以直接进行White检验。点击view后,依次选取ResidualDiagnostics->HeteroskedasticityTest点击White检验后

5、可以得到检验结果。请对双对数模型进行异方差检验。(3)异方差的修正在上面的例子中使用加权最小二乘法修正异方差的eviews命令为:genrye=y/@abs(e)genrce=1/@abs(e)genrx1e=x1/@abs(e)genrx2e=x2/@abs(e)lsyecex1ex2e5.序列相关的检验与修正利用excel表格中“序列相关-1”的数据,估计模型结果为:(1)图示检验主要通过残差序列的一阶滞后项对残差序列的散点图判断是否存在一阶序列相关,相应的eview命令为:scate(-1

6、)e(2)DW检验可以通过回归结果直接得到DW统计量。(3)LM检验点击view后,依次选取ResidualDiagnostics->SerialcorrelationLMTest,选取检验阶数(一般为1或2)后就可以得到结果。(4)序列相关的修正在本例中使用广义差分法修正序列相关的命令为:Lsinfcunemar(1)ar(2)练习1:根据excel文件中“异方差-2”的数据建立回归模型:,并检验得到的模型是否存在异方差性。练习2:excel文件“异方差-3”给出了财富500强企业中的447个

7、高管薪水数据,salary表示1999年薪水和奖金;tenure表示任职CEO的年数,age表示CEO年龄,sale表示1998年公司销售收入;profit表示1998年公司利润;assets表示1998年公司总资产。建立回归模型:,检验得到的模型是否存在异方差性。练习3:excel文件“异方差-4”给出了已婚妇女是否参加就业以及相关数据,其中y=1表示参加就业,y=0表示不参加就业;educ表示受教育年限,exper表示工作经验,age表示年龄。建立回归模型:。该模型也称为线性概率模型,请检验

8、得到的模型是否存在异方差性。练习4:excel文件“序列相关-2”给出了美国1947年-2000年的人均消费(CS)、可支配收入(Yd)、财富(W)和利率(i)数据,建立回归模型:。根据DW统计量判断该模型是否存在一阶序列相关,如果存在请使用广义差分法修正之。在此基础上利用LM检验判断该模型是否存在二阶序列相关。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。