第8章--回归正交试验设计.ppt

第8章--回归正交试验设计.ppt

ID:61772321

大小:592.50 KB

页数:55页

时间:2021-03-19

第8章--回归正交试验设计.ppt_第1页
第8章--回归正交试验设计.ppt_第2页
第8章--回归正交试验设计.ppt_第3页
第8章--回归正交试验设计.ppt_第4页
第8章--回归正交试验设计.ppt_第5页
资源描述:

《第8章--回归正交试验设计.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第8章回归正交试验设计OrthogonalRegressionDesign正交设计:优方案只能限制在已定的水平上,而不是一定试验范围内的最优方案回归正交设计(orthogonalregressiondesign):可以在因素的试验范围内选择适当的试验点用较少的试验建立回归方程能解决试验优化问题不适合非数量性因素8.1一次回归正交试验设计及结果分析建立试验指标(y)与m个试验因素x1,x2,…,xm之间的一次回归方程例:m=3时,一次回归方程:y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3其中x1

2、,x2,x3表示3个因素;x1x2,x1x3,x2x3表示交互作用若不考虑交互作用,为三元一次线形回归方程:y=a+b1x1+b2x2+b3x38.1.1一次回归正交设计的基本方法(1)确定因素的变化范围以因素xj为例:设xj的变化范围为[xj1,xj2]xj1为xj的下水平xj2为xj的上水平xj0为xj的零水平:xj0=(xj1+xj2)/2因素xj的变化间距Δj:Δj=上水平-零水平=xj2-xj0Δj=(xj2-xj1)/2(2)因素水平的编码zj:因素xj的编码,称为规范变量xj:自然变量上水平xj2的编码:zj2=1下水

3、平xj1的编码:zj1=-1零水平xj0的编码:zj0=0编码(coding):将因素xj的各水平进行线性变换:编码目的:使每因素的每水平在编码空间是“平等”的,规范变量zj的取值范围都是[-1,1]编码能将试验结果y与因素xj(j=1,2,…,m)之间的回归问题,转换成试验结果y与编码值zj之间的回归问题,这意味着各个因素偏回归系数的求取方法与因素计量单位和取值及因素个数无关,其偏回归系数的符号和大小直接反映了该因素作用的效果。(3)一次回归正交设计表将二水平的正交表中“2”用“-1”代换,例:回归正交设计表的特点:任一列编码的和

4、为0任两列编码的乘积之和等于0(4)试验方案的确定可参考正交设计的表头设计方法交互作用列的编码等于表中对应两因素列编码的乘积零水平试验(也称中心试验,为失拟检验提供信息,试验次数m0>=2)表头设计:8.1.2一次正交回归方程的建立总试验次数为n:n=mc+m0mc:二水平试验次数(原正交表的次数)m0:零水平试验次数一次正交回归方程系数的计算:常数项:a一次项系数:bj交互项系数:bjkj=1,2,…,mj>k,k=1,2,…,m-1说明:求得的回归系数直接反映了该因素作用的大小回归系数的符号反映了因素对试验指标影响的正负8.1.

5、3回归方程及偏回归系数的方差分析8.1.3.1无零水平试验时(不需失拟检验时)①平方和:总平方和:一次项偏回归平方和:交互项偏回归平方和:回归平方和:残差平方和:②自由度dfT=n―1各种偏回归平方和的自由度=1回归平方和的自由度:残差自由度:③均方④F检验:回归方程显著性检验偏回归系数显著性检验:判断因素或交互作用对试验的影响程度经检验不显著的因素或交互作用应归入残差,重新检验可直接从回归方程中剔除这些一次和交互项例8-1:相关数据与教材136页例6-5相同(1)因素水平编码(2)正交表的选择和试验方案的确定(3)回归方程的建立m

6、0=0,n=mc=8计算表(3)正交回归方程的建立计算各偏回归系数从偏回归系数绝对值的大小可以得到各因素及交互作用效应大小的顺序为b2>b1>b13>b3>b12,这与该试验数据在例题6-5中用正交试验分析方法获得的结论一致。写出y与规范变量zj的回归方程(4)正交回归方程的方差分析(5)正交回归方程的回代简化后试验指标y与规范变量zj的回归方程y=0.50475+0.03375z2试验指标y与自然变量xj的回归方程依编码公式z2=(x2-x20)/Δ2=(x2-2100)/300整理后得到:y=6.49523+0.0001125x

7、28.1.3.2有零水平试验时目的:进行回归方程的失拟性(lackoffit)检验(但需要求m0≥2)失拟性检验:为了检验一次回归方程在整个研究范围内的拟合情况失拟性检验步骤:设m0次零水平试验结果为y01,y02,…,y0m0①重复试验误差:平方和:重复试验误差的自由度:②回归方程失拟部分:失拟平方和:失拟平方和自由度:对于给定的显著性水平α(一般取0.1)当FLf<Fα(dfLf,dfe1)时,就认为回归方程失拟不显著,失拟平方和SSLf是由随机误差造成的,所建立的回归方程是拟合得很好例8-2③失拟检验:例8-2教材177页(1

8、)因素水平编码编码zj乙醇浓度x1/%固液比x2回流次数x3-16081070102180123Δj1021不考虑交互作用,选正交表L8(27),顺序安排三个可控因素在第1、2、4列,零水平试验三次,分别为第9、10、11号试验例8-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。