一元二次不等式及其解法(1)教案.doc

一元二次不等式及其解法(1)教案.doc

ID:61659509

大小:143.00 KB

页数:3页

时间:2021-03-06

一元二次不等式及其解法(1)教案.doc_第1页
一元二次不等式及其解法(1)教案.doc_第2页
一元二次不等式及其解法(1)教案.doc_第3页
资源描述:

《一元二次不等式及其解法(1)教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时教案备课人魏品强授课时间课题§3.1一元二次不等式及其解法(1)课标要求理解一元二次方程、一元二次不等式与二次函数的关系,教学目标知识目标掌握图象法解一元二次不等式的方法技能目标培养数形结合的能力,培养分类讨论的思想方法,情感态度价值观激发学习数学的热情,培养勇于探索的精神,勇于创新精神,重点从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法难点理解二次函数、一元二次方程与一元二次不等式解集的关系教学过程及方法问题与情境及教师活动学生活动【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决

2、问题,最后得到一元二次不等式模型:…………………………(1)2.讲授新课1)一元二次不等式的定义象这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:二次函数有两个零点:于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数的图象,如图,观察函数图象,可知:当x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即;学生回答1教学过程及方法问题与情境及教师活动学生活动当0<

3、x<5时,函数图象位于x轴下方,此时,y<0,即;所以,不等式的解集是,从而解决了本节开始时提出的问题。3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式: 一般地,怎样确定一元二次不等式>0与<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程=0的根的情况(2)抛物线的开口方向,也就是a的符号总结讨论结果:(l)抛物线 (a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程=0的判别式三种取值情况(Δ>0,Δ

4、=0,Δ<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分Δ>O,Δ=0,Δ<0三种情况,得到一元二次不等式>0与<0的解集一元二次不等式的解集:设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)[范例讲解]例2(课本第87页)求不等式的解集.解:因为.所以,原不等式的解集是例3(课本第88页)解不等式.解:整理,得.学生分析回答2教学过程及方法问题与情境及教师活动学生活动因为无实数解,所以不等式的解集是.从而,原不等式的解集是.3.随堂练习课本第89的练习1(1)、(3)、(5)、(7)4.课时小

5、结解一元二次不等式的步骤:①将二次项系数化为“+”:A=>0(或<0)(a>0)②计算判别式,分析不等式的解的情况:ⅰ.>0时,求根<,ⅱ.=0时,求根==,ⅲ.<0时,方程无解,③写出解集.5.评价设计课本第89页习题3.2[A]组第1题教学小结1.三个“二次”的联系2.一元二次不等式的解法课后反思3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。