欢迎来到天天文库
浏览记录
ID:61629257
大小:16.20 KB
页数:3页
时间:2021-03-04
《教学案例:平行线性质.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、教学案例: 平行线性质 1.创设情境,设疑激思 ⑴播放一组幻灯片。 内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。 ⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? ⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。 ⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。 2
2、.数形结合,探究性质 ⑴画图探究,归纳猜想。 教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角) 教师提出研究性问题一: 指出图中的同位角,并度量这些角,填写结果: 第一组:同位角()()角的度数()()数量关系() 第二组:同位角()()角的度数()()数量关系() 第三组:同位角()()角的度数()()数量关系() 第四组:同位角()()角的度数()()数量关系() 教
3、师提出研究性问题二: 将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。 教师提出研究性问题三: 再画出一条截线d,看你的猜想结论是否仍然成立? 学生活动:探究、按小组讨论,最后得出结论:仍然成立。 ⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想 ⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
4、 3.引申思考,培养创新 教师提出研究性问题四: 请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。 教师活动:评价学生的研究成果,并引导学生说理 因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等) 又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义) 所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换) 教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两
5、直线平行,内错角相等) 平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补) 4.实际应用,优势互补 ⑴(抢答)课本P21练一练1、2及习题5.31、3. ⑵(讨论解答)课本P22习题5.32、4、5. 5.课堂总结: 这节课你有哪些收获? ⑴学生总结:平行线的性质1、2、3.⑵教师补充总结: ①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。 ②用数形结合的方法来解决问题;(如我们前面将同位角测
6、量后分析问题)。③用准确的语言来表达问题(如平行线的性质1、2、3的表述)。④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)6.作业。学习与评价:P236(选择);P247、12(拓展与延伸)。 七、教学反思 数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教
7、学实现了三个方面的转变: 1.教的转变 本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。 2.学的转变 学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。 3.课堂氛围的转变
8、 整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。 总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
此文档下载收益归作者所有