2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc

2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc

ID:61622614

大小:337.50 KB

页数:8页

时间:2021-03-04

2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc_第1页
2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc_第2页
2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc_第3页
2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc_第4页
2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc_第5页
资源描述:

《2022届高考数学统考一轮复习课后限时集训42空间点直线平面之间的位置关系理含解析新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课后限时集训(四十二) 空间点、直线、平面之间的位置关系建议用时:40分钟一、选择题1.a,b,c是两两不同的三条直线,下面四个命题中,真命题是(  )A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC [若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.]2.给出下列说法:①梯形的四

2、个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是(  )A.①B.①④C.②③D.③④B [①显然正确;②错误,三条平行直线可能确定1个或3个平面;③若三个点共线,则两个平面相交,故③错误;④显然正确.故选B.]3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是(  )A     B      C     DD [A,B,C图中四点一定共面,D中四点不共面.]4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β

3、,C∉l,则平面ABC与平面β的交线是(  )A.直线ACB.直线ABC.直线CDD.直线BCC [由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.]5.(2020·兰州模拟)如图所示,在正方体ABCDA1B1C1D1中,若点E为BC的中点,点F为B1C1的中点,则异面直线AF与C1E所成角的余弦值为(  )A.B.C.D.B [不妨设正方体的棱长为1,取A1D1的中点G,连接

4、AG,易知GA∥C1E,则∠FAG(或其补角)为异面直线AF与C1E所成的角.连接FG(图略),在△AFG中,AG==,AF==,FG=1,于是cos∠FAG==,故选B.]6.在正三棱柱ABCA1B1C1中,AB=BB1,则AB1与BC1所成角的大小为(  )A.30°B.60°C.75°D.90°D [将正三棱柱ABCA1B1C1补为四棱柱ABCDA1B1C1D1,连接C1D,BD(图略),则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=,则BC=CD=2,∠BCD=120°,BD=2,又因为BC1=C1D=,所以∠BC1D

5、=90°.]二、填空题7.已知AE是长方体ABCDEFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有条.4 [如图,作出长方体ABCDEFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条.]8.已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD=4,EF⊥AB,则EF与CD所成角的度数为.30° [如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=AB=1,GE∥CD,且GE=CD=2,∴∠FEG

6、或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF==,可得∠GEF=30°,∴EF与CD所成角的度数为30°.]9.在下列四个图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有.(填序号)①     ②     ③     ④②④ [图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面G

7、MN,因此GH与MN异面.所以在图②④中,GH与MN异面.]三、解答题10.如图所示,四边形ABEF和ABCD都是梯形,BC綊AD,BE綊FA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解] (1)证明:由已知FG=GA,FH=HD,可得GH綊AD.又BC綊AD,∴GH綊BC.∴四边形BCHG为平行四边形.(2)∵BE綊AF,G为FA的中点,∴BE綊FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴

8、C,D,F,E四点共面.11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.[解] (1)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。