抛物线的简单几何性质.docx

抛物线的简单几何性质.docx

ID:61534397

大小:132.66 KB

页数:8页

时间:2021-02-25

抛物线的简单几何性质.docx_第1页
抛物线的简单几何性质.docx_第2页
抛物线的简单几何性质.docx_第3页
抛物线的简单几何性质.docx_第4页
抛物线的简单几何性质.docx_第5页
资源描述:

《抛物线的简单几何性质.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.2抛物线的简单几何性质(一)学习目标:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.(二)学习重点:抛物线的几何性质及其运用(三)学习难点:抛物线几何性质的运用(四)学习过程:一、复习引入:(回顾并填表格)1.抛物线定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做.定点F叫做抛物线的,定直线l叫做抛物线的.2.抛物线的标准方程:图形yOFlyyylOxFFxFOxOxll方程焦点准线相同

2、点:不同点:二、讲解新课:类似研究双曲线的性质的过程,我们以y22pxp0为例来研究一下抛物线的简单几何性质:1.范围2.对称性3.顶点4.离心率对于其它几种形式的方程,列表如下:(通过对照完成下表)标准方程图形顶点对称轴焦点准线离心率第1页yy22pxp0OFxlyy22pxp0x22pyp0x22pyp0注意p的几何意义:FOxl思考:抛物线有没有渐近线?(体会抛物线与双曲线的区别)三、例题讲解:例1已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点M(2,22),求它的标准方程,并用描点法画出图形.例2斜率为1的直线经过抛物线y2=4x的焦点,

3、与抛物线交于两点A、B,求线段AB的长.(思考用不同方法求解)变式训练:过抛物线y4x2的焦点F作直线,交抛物线于P(x1,y1),Q(x2,y2)两点,若y1y26,求PQ。点评:由以上例2以及变式训练可总结出焦点弦弦长:四、达标练习:1.过抛物线y24x的焦点作直线交抛物线于Ax1,y1,Bx2,y2两点,如果x1x26,那么

4、AB

5、=()(A)10(B)8(C)6(D)42.已知M为抛物线y24x上一动点,F为抛物线的焦点,定点P3,1,则第2页

6、MP

7、

8、MF

9、的最小值为()(A)3(B)4(C)5(D)63.过抛物线y24x焦点F的直线l它交于A、B

10、两点,则弦AB的中点的轨迹方程是______4.定长为3的线段AB的端点A、B在抛物线y2x上移动,求AB中点M到y轴距离的最小值,并求出此时AB中点M的坐标.参考答案:1.B2.B3.y22x14.M5,2,M到y轴距离的最小值为5.424五、小结:抛物线的离心率、焦点、顶点、对称轴、准线、中心等.六、课后作业:1.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.(2)顶点在原点,焦点在y轴上,且过P(4,2)点.(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.2.过抛物线焦点F的直线与

11、抛物线交于A、B两点,若A、B在准线上的射影是A2、B2,则∠AFB等于.223.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.4.以椭圆x2y21的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆5在准线所得的弦长.5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?习题答案:1.(1)y2=±32x(2)x2=8y(3)x2=-8y2.90°3.x2=±16y4.455.205米七、板书设计(略)第3页2.3.2抛物线的简单几何性质(一)教学目标:1.掌握抛物线的范围、对

12、称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.(二)教学重点:抛物线的几何性质及其运用(三)教学难点:抛物线几何性质的运用(四)教学过程:一、复习引入:(学生回顾并填表格)1.抛物线定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程:图形yOFlyxFOxllyylOxFFOx方y22px(p0)y22px(p0)x22py(p0)x22py

13、(p0)程焦(p,0)(p,0)(0,p)(0,p)点2[来源:学&科&网Z&X&X&K]222准pxppypx2y2线22相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的1,即2pp4.42不同点:(1)图形关于x轴对称时,x为一次项,y为二次项,方程右端为2px、左端为y2;图形关于y轴对称时,x为二次项,y为一次项,方程右端为2py,左端为x2.(2)开口方向在x轴(或y轴)正向时,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口在x轴(或y轴)负

14、向时,焦点在x轴(或y轴)负半轴时,方程右端取负号.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。