2015年高考理科数学试题汇编:导函数.doc

2015年高考理科数学试题汇编:导函数.doc

ID:61424968

大小:1.75 MB

页数:18页

时间:2021-01-28

2015年高考理科数学试题汇编:导函数.doc_第1页
2015年高考理科数学试题汇编:导函数.doc_第2页
2015年高考理科数学试题汇编:导函数.doc_第3页
2015年高考理科数学试题汇编:导函数.doc_第4页
2015年高考理科数学试题汇编:导函数.doc_第5页
资源描述:

《2015年高考理科数学试题汇编:导函数.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、(重庆)20.(本小题满分12分,(1)小问7分,(2)小问5分)设函数(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;(2)若在上为减函数,求的取值范围。【答案】(1),切线方程为;(2).【解析】试题分析:本题考查求复合函数的导数,导数与函数的关系,由求导法则可得,由已知得,可得,于是有,,,由点斜式可得切线方程;(2)由题意在上恒成立,即在上恒成立,利用二次函数的性质可很快得结论,由得.试题解析:(1)对求导得因为在处取得极值,所以,即.考点:复合函数的导数,函数的极值,切线,单调性.(新课标1)12.

2、设函数=,其中a1,若存在唯一的整数x0,使得0,则的取值范围是()A.[-,1)B.[-,)C.[,)D.[,1)【答案】D【解析】试题分析:设=,,由题知存在唯一的整数,使得在直线的下方.因为,所以当时,<0,当时,>0,所以当时,=,当时,=-1,,直线恒过(1,0)斜率且,故,且,解得≤<1,故选D.考点:导数的综合应用(15)(安徽)设,其中均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①;②;③;④;⑤.【答案】①③④⑤考点:1函数零点与方程的根之间的关系;2.函数的单调性及其

3、极值.(福建)10.若定义在上的函数满足,其导函数满足,则下列结论中一定错误的是()A.B.C.D.【答案】C考点:函数与导数.(福建)20已知函数,(Ⅰ)证明:当;(Ⅱ)证明:当时,存在,使得对(Ⅲ)确定k的所以可能取值,使得存在,对任意的恒有.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:(Ⅰ)构造函数只需求值域的右端点并和0比较即可;(Ⅱ)构造函数即,求导得,利用导数研究函数的形状和最值,证明当时,存在,使得即可;(Ⅲ)由(Ⅰ)知,当时,对于故,则不等式变形为,构造函数,只需说明,易发现函数在递增

4、,而,故不存在;当时,由(Ⅱ)知,存在,使得对任意的任意的恒有,此时不等式变形为,构造,易发现函数在递增,而,不满足题意;当时,代入证明即可.试题解析:解法一:(1)令则有当,所以在上单调递减;故当时,即当时,.(2)令则有当,所以在上单调递增,故对任意正实数均满足题意.当时,令得.取对任意恒有,所以在上单调递增,,即.综上,当时,总存在,使得对任意的恒有.(3)当时,由(1)知,对于故,,令,则有故当时,,在上单调递增,故,即,所以满足题意的t不存在.当时,由(2)知存在,使得对任意的任意的恒有.此时,令,则有故当时,,

5、在上单调递增,故,即,记与中较小的为,则当,故满足题意的t不存在.当,由(1)知,,令,则有当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t满足题意.综上,.解法二:(1)(2)同解法一.(3)当时,由(1)知,对于,故,令,从而得到当时,恒有,所以满足题意的t不存在.当时,取由(2)知存在,使得.此时,令,此时,记与中较小的为,则当,故满足题意的t不存在.当,由(1)知,,令,则有当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t满足题意综上,.考点:导数的综合应用.(广东)19.(本小题满分14分

6、)设,函数。(1)求的单调区间;(2)证明:在上仅有一个零点;(3)若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:.【答案】(1);(2)见解析;(3)见解析.【解析】(1)依题,∴在上是单调增函数;【考点定位】本题考查导数与函数单调性、零点、不等式等知识,属于中高档题.(四川)21.已知函数(1)设(2)证明:存在,使得在区间内恒成立,且在内有唯一解.【答案】(1)当时,在区间上单调递增,在区间上单调递减;当时,在区间上单调递增.(2)详见解析.【解析】试题分析:(1)首先对函数求导,得,然后

7、再求导得.利用导数的符号即得其单调性.此题分和两种情况讨论.(2)要使得在区间内恒成立,且在内有唯一解,则这个解应为极小值点,且极小值为0.所以我们应考虑求的极小值.由,解得,代入得.是否存在令使得呢?为此,令.因为,故存在,使得.接下来的问题是,此时的是否满足呢?令.由知,函数在区间上单调递增.所以.即.当时,有.由(1)知,函数在区间上单调递增.故当时,有,从而;当时,有,从而;所以,当时,.试题解析:(1)由已知,函数的定义域为,,所以.当时,在区间上单调递增,在区间上单调递减;当时,在区间上单调递增.(2)由,解得

8、.令.则,.故存在,使得.令,.由知,函数在区间上单调递增.所以.即.当时,有,.由(1)知,函数在区间上单调递增.故当时,有,从而;当时,有,从而;所以,当时,.综上所述,存在,使得在区间内恒成立,且在内有唯一解.考点:本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。