2013深圳中考二次函数最值问题.doc

2013深圳中考二次函数最值问题.doc

ID:61422570

大小:496.50 KB

页数:11页

时间:2021-01-28

2013深圳中考二次函数最值问题.doc_第1页
2013深圳中考二次函数最值问题.doc_第2页
2013深圳中考二次函数最值问题.doc_第3页
2013深圳中考二次函数最值问题.doc_第4页
2013深圳中考二次函数最值问题.doc_第5页
资源描述:

《2013深圳中考二次函数最值问题.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、知识要点:二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当时,函数有最小值,并且当,;当时,函数有最大值,并且当,.如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内随的增大而增大,则当时,,当时,;如果在此范围内随的增大而减小,则当时,,当时,.商品定价一类利润计算公式:经常出现的数据:商品进价;商品售价1;商品销售量;商品售价2;商品定价;(商品

2、调价);商品销售量1;销售量变化率;其他成本。u单价商品利润=商品定价-商品售价1u△(价格变动量)=商品定价-商品售价2(或者直接等于商品调价);u销售量变化率=销售变化量÷引起销售量变化的单位价格;u商品总销售量=商品销售量1±△×销售量变化率;u总利润(W)=单价商品利润×总销售量-其他成本例1:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?练习:1.(2

3、010山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)2、

4、(2012河北省24,9分)某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得利润是

5、26元(利润=出厂价-成本价)。①求一张薄板的利润与边长这之间满足的函数关系式。②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线的顶点坐标是。3、(2012年四川省巴中市,29,9)某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少时

6、每个月可获得最大利润?最大利润是多少?4、(2012贵州省毕节市,25,12分)某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨元(为整数),每个月的销售利润为的取值范围为元。(1)求与的函数关系式,并直接写出自变量的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?5、(2012山东省青

7、岛市,22,10)(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:⑴试判断y与x之间的函数关系,并求出函数关系式;⑵若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;⑶若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.6、(2

8、012山西,24,10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?7、(2012山东省聊城,24,12分)某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。