欢迎来到天天文库
浏览记录
ID:6139580
大小:1.17 MB
页数:49页
时间:2017-11-16
《清华弹性力学课件_variational formulation》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、TheoryofElasticityIntroductionElasticityofSolidsFieldEquationsofElasticity-DifferentialFormulationPrismaticRodsPlaneProblems–TheoryandSolutionsPlaneProblems–ApplicationsVariationalFormulationofElasticityThree-dimensionalProblemsIndex0VariationalFormul
2、ationBasicConceptsofVariationWeakSolutionsPrincipleofVirtualWorkVariationalPrinciplesNumericalMethodsBasedonEnergyPrinciples1Chapter7BasicConceptsofVariationConceptofVariationConstraintsBasicVariationalOperationsEulerEquations2Chapter7.1WeakSolutionsS
3、trongSolutionsThestrongsolutionsofelasticityrefertothecasewherethesolutionssatisfyingthecompletesetoffieldequationsofelasticityinapoint-wisemanner.3Chapter7.2equilibriumequation:thekinematicalrelation:theconstitutiverelation:theboundaryconditions:Fiel
4、dEquationsWeakSolutionsTheweaksolutions,ontheotherhand,arebasedontheenergyprinciples.keycharacteristics:Theproblemisformulatedfromacompatiblestateinthesenseofeitherakinematicalorstaticallyadmissible.Possibleinclusionofconstraintsonthecompatiblestate.4
5、Chapter7.2keycharacteristics:Asuitableenergyprincipleisselectedastheguidingprinciple.Thecontinuity(ordifferentiability)requirementforthesolutionisrelaxedtogivethenameofweaksolution.Theproblemisapproximatedinacertainsenseoftruncation.Avarietyofapproxim
6、ationmethodsexist,includingFEM,Rayleigh-Ritzmethod,themethodofweightedresiduals,etc.WeakSolutions5Chapter7.2PrincipleofVirtualWorkACompatibleField6Chapter7.3CompatibleFieldsstaticallycompatiblefieldsIfinVandon,thenthestaticfield()iscalledstaticallycom
7、patiblefields.kinematicalcompatiblefieldsifinVandon,thenthekinematicalfield()iscalledkinematicalcompatiblefields.7Chapter7.3CompatibleFieldscompletecontinuumfield.Thecombinationofthestaticfield()andthekinematicalfield()formsthecompletecontinuumfield.t
8、otallycompatiblecontinuumfieldIf,where8Chapter7.3TheoremforTotallyCompatibleFieldsTheorem:Ifacontinuumfieldisnotonlykinematicalcompatible(KC)butalsostaticallycompatible(SC),thenitmustbetotallycompatible.Proof:9Chapter7.3DeductionTheorem1Ifacon
此文档下载收益归作者所有