逐步回归分析实例教学教材.doc

逐步回归分析实例教学教材.doc

ID:60808339

大小:472.00 KB

页数:15页

时间:2020-12-20

逐步回归分析实例教学教材.doc_第1页
逐步回归分析实例教学教材.doc_第2页
逐步回归分析实例教学教材.doc_第3页
逐步回归分析实例教学教材.doc_第4页
逐步回归分析实例教学教材.doc_第5页
资源描述:

《逐步回归分析实例教学教材.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品好文档,推荐学习交流逐步回归分析在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方

2、程。回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。逐步回归在病虫预报中的应用实例:以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐

3、步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。对1984~1995年的病情指数进行回检,然后对1996~1998年的病情进行预报,再检验预报的效果。变量说明如下: y:历年病情指数 x1:前年冬季油菜越冬时的蚜量(头/株) x2:前年冬季极端气温 x3:5月份最高气温 x4:5月份最低气温 x5:3~5月份降水量 x6:4~6月份降水量 x7:3~5月份均温 x8:4~6月份均温 x9x11:5月份均温 x12:5月份降水量 x13:6月份均温 x14:6月份降水量 x15:第一次蚜迁高峰期百株烟草有翅

4、蚜量 x16:5月份油菜百株蚜量 x17:7月份降水量 x18:8月份降水量仅供学习与交流,如有侵权请联系网站删除谢谢15精品好文档,推荐学习交流:4月份降水量 x10:4月份均温 x19:7月份均温 x20:8月份均温 x21:元月均温 1)准备分析数据在SPSS数据编辑窗口中,用“File→Open→Data”命令,打开“DATA6.xls”数据文件。数据工作区如下图3-1显示。 图3-1 2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图3-2所

5、示的线性回归过程窗口。仅供学习与交流,如有侵权请联系网站删除谢谢15精品好文档,推荐学习交流 图3-2线性回归对话窗口 3)设置分析变量设置因变量:将左边变量列表中的“y”变量,选入到“Dependent”因变量显示栏里。设置自变量:将左边变量列表中的“x1”~“x21”变量,全部选移到“Independent(S)”自变量栏里。    设置控制变量:本例子中不使用控制变量,所以不选择任何变量。选择标签变量:选择“年份”为标签变量。选择加权变量:本例子没有加权变量,因此不作任何设置。 4)回归方式仅供学习与交流,如有侵

6、权请联系网站删除谢谢15精品好文档,推荐学习交流在“Method”分析方法框中选中“Stepwise”逐步分析方法。该方法是根据“Options”选择对话框中显著性检验(F)的设置,在方程中进入或剔除单个变量,直到所建立的方程中不再含有可加入或可剔除的变量为止。设置后的对话窗口如图3-3。 图3-3 5)设置变量检验水平在图6-15主对话框里单击“Options”按钮,将打开如图3-4所示的对话框。仅供学习与交流,如有侵权请联系网站删除谢谢15精品好文档,推荐学习交流 图3-4“SteppingMethodCriter

7、ia”框里的设置用于逐步回归分析的选择标准。其中“UseprobabilityofF”选项,提供设置显著性F检验的概率。如果一个变量的F检验概率小于或等于进入“Entry”栏里设置的值,那么这个变量将被选入回归方程中;当回归方程中变量的F值检验概率大于剔除“Removal”栏里设置的值,则该变量将从回归方程中被剔除。由此可见,设置F检验概率时,应使进入值小于剔除值。“UesFvalue”选项,提供设置显著性F检验的分布值。如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当回归方程中变

8、量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。同时,设置F分布值时,应该使进入值大于剔除值。本例子使用显著性F检验的概率,在进入“Entry”栏里设置为“0.15”,在剔除“Removal”栏里设置为“0.20”(剔除的概率值应比进入的值大),如图6-17所示。图6-17窗口中的其它设置参照一元回归设置

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。