正弦定理和余弦定理上课讲义.doc

正弦定理和余弦定理上课讲义.doc

ID:60807113

大小:100.00 KB

页数:6页

时间:2020-12-20

正弦定理和余弦定理上课讲义.doc_第1页
正弦定理和余弦定理上课讲义.doc_第2页
正弦定理和余弦定理上课讲义.doc_第3页
正弦定理和余弦定理上课讲义.doc_第4页
正弦定理和余弦定理上课讲义.doc_第5页
资源描述:

《正弦定理和余弦定理上课讲义.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品好文档,推荐学习交流正弦定理和余弦定理高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.1.正弦定理:===2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_

2、C;(3)sinA=,sinB=,sinC=等形式,解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以变形:cosA=,cosB=,cosC=.3.S△ABC=absinC=bcsinA=acsinB==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=bsinAbsinAb解的个数一解两解一解一解[难点正本 疑

3、点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB;tanA+tanB+tanC=tanA·tanB·tanC;在锐角三角形中,cosA

4、.(2012·重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且cosA=,cosB=,b=3,则c=________.4.(2011·课标全国)在△ABC中,B=60°,AC=,则AB+2BC的最大值为________.5.已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc=16,则三角形的面积为(  )仅供学习与交流,如有侵权请联系网站删除谢谢6精品好文档,推荐学习交流A.2B.8C.D.题型一 利用正弦定理解三角形例1 在△ABC中,a=,b=,B=45°.求角A、C和边c.思维启迪:已知两边及一边对角或已知

5、两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则角A的大小为________.题型二 利用余弦定理求解三角形例2 在△ABC中,a、b、c分别是角A、B、C的对边,且=-.(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.

6、思维启迪:由=-,利用余弦定理转化为边的关系求解.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2+cosA=0.(1)求角A的值;(2)若a=2,b+c=4,求△ABC的面积.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC-b-c=0.(1)求A

7、;(2)若a=2,△ABC的面积为,求b,c.思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A;面积公式和余弦定理相结合,可求出b,c.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC中,内角A,B,C所对的边长分别是a,b,c.仅供学习与交流,如有侵权请联系网站删除谢谢6精品好文档,推荐学习交流(1)若c=2,C=,且△ABC的面积为,求a,b的值;代数化简或三角运算不当致误典例:(12分)在△ABC中,若(a2+b2)sin(A-B)=(a2-b

8、2)·sin(A+B),试判断△ABC的形状.审题视角 (1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以下两种不同方式切入:一、根据余弦定理,进

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。