资源描述:
《高中数学几种排列组合综合问题的解法ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、几种排列组合综合问题的解法从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4.组合数公式:1.排列的定义:排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.2021/8/182例1.7人排成一排.甲、乙两人不相邻,有多少种不同的排法?♀♀ ♀♀♀解:分两步进行:♀♀几个元素不能相邻时,先排一般元素,再让特殊元素插空.第1步,把除甲乙外的一般人排列:第2步,将
2、甲乙分别插入到不同的间隙或两端中(插空):↑↑↑↑↑ ↑解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决.1.插空法:2021/8/183变学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法.根据乘法原理,共有的不同坐法为种.结论1插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素
3、按要求插入排好元素的空档之中即可.分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.2021/8/184相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.2.捆绑法例2.6人排成一排.甲、乙两人必须相邻,有多少种不的排法?♀♀♀♀♀♀解:(1)分两步进行:甲乙第一步,把甲乙排列(捆绑):第二步,甲乙两个人的梱看作一个元素与其它的排队:♀♀几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.2021/8/185变5个男生
4、3个女生排成一排,3个女生要排在一起,有多少种不同的排法?解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法.结论2捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.2021/8/186例4.5个人站成一排,甲总站在乙的右侧
5、的有多少种站法?几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.3.除法消序法(留空法)解法1:将5个人依次站成一排,有解法2:先让甲乙之外的三人从5个位置选出3个站好,有种站法,然后再消去甲乙之间的顺序数∴甲总站在乙的右侧的有站法总数为种站法,留下的两个位置自然给甲乙有1种站法∴甲总站在乙的右侧的有站法总数为2021/8/187变式:如下图所示,有5横8竖构成的方格图,从A到B只能上行或右行共有多少条不同的路线?解:如图所示→1↑①→2↑②↑③→3→4→5↑④→
6、6→7将一条路经抽象为如下的一个排法(5-1)+(8-1)=11格:其中必有四个↑和七个→组成!所以,四个↑和七个→一个排序就对应一条路经,所以从A到B共有条不同的路径.也可以看作是1,2,3,4,5,6,7,①,②,③,④顺序一定的排列,有种排法.2021/8/188n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.例4.某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4个教学班,每班至少一个名额,则不同的分配方案共有___种.4.隔板法:解:问题
7、等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将16个小球串成一串,截为4段有种截断法,对应放到4个盒子里.因此,不同的分配方案共有455种.2021/8/189n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.变式:某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.解:问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里
8、,每个盒子至少有一个小球的放法种数问题.将10个小球串成一串,截为4段有种截断法,对应放到4个盒子里.因此,不同的分配方案