光栅衍射实验的误差分析及改进途径知识分享.doc

光栅衍射实验的误差分析及改进途径知识分享.doc

ID:60786770

大小:122.00 KB

页数:5页

时间:2020-12-18

光栅衍射实验的误差分析及改进途径知识分享.doc_第1页
光栅衍射实验的误差分析及改进途径知识分享.doc_第2页
光栅衍射实验的误差分析及改进途径知识分享.doc_第3页
光栅衍射实验的误差分析及改进途径知识分享.doc_第4页
光栅衍射实验的误差分析及改进途径知识分享.doc_第5页
资源描述:

《光栅衍射实验的误差分析及改进途径知识分享.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品好文档,推荐学习交流光栅衍射实验的误差分析及改进途径摘要:平行光未能严格垂直人射光栅将形成误差,常用的对称测盘法只能消除误差的一阶修正项,仍存在二阶修正项误差。采用测t最小衍射角的方法能有效地消除一阶、二阶修正项的误差,而且能观测到更高级次的衍射条纹,从而减少读数误差,提高实验精度。1光栅放置误差的理论分析当平行光与光栅平面法线成a角斜入射时的光栅方程为或上两式中Φk,Φ'k的物理意义如下图所示。因此,如果光栅放置得不严格垂直于人射光,而实验测量时仍用公式(1)进行波长、分辨率等物理量的计算,将造成实验误差。不失一般性,就方程

2、(2)考虑人射角θ对测量结果的影。图1平行光斜入射光栅将方程(2)展开并整理,得(4)与(1)式比较可知,由于人射角θ不等于零而产生了两项误差,如果θ很小,第一项tan(Φk/2)sinθ≈tan(Φk/2)xθ可视为一阶小量,第二项2sin2θ/2≈θ2/2可视为二阶小量,为方便计,称第一项为误差的一阶修正项,第二项为误差的二阶修正项。如果θ较大,则引起的误差不能忽略。进一步分析表明,在相同人射角θ的条件下,当衍射级次k增加时,Φk增加,由于tanΦk是递增函数,因此一阶修正项增大,测量高级次的光谱会使实验误差增大;而误差的二阶

3、修正项与衍射级次k和衍射角Φk无关。从测量理论来看,衍射级次k越高,衍射角Φk越大,估读Φk引起sinΦk的相对误差越小,因为△sinΦk/sinΦk=ctgΦk△Φk,而ctgΦk是递减函数。另外角色散率dΦk/dλ=tanΦk/λ因正比于tanΦk而增大;角分辨率因正比于衍射级次k而增加。因此测量高次的光谱非但不增大二阶修正项的相对误差,反而能减小其它物理量的测量误差,而误差的一级修正项则与此矛盾。2减少误差的途径仅供学习与交流,如有侵权请联系网站删除谢谢5精品好文档,推荐学习交流如果能测出θ值代入(4)进行计算,理论上能对光

4、栅放置不精确而引起的误差进行修正。但作为教学型实验,人射角θ的测量有一定难度,而且从测量理论上考虑,应尽可能减少直接测量量的数目。考虑到第一修正项系数为奇函数,因此可以用对称测量的方法来消除,这也是通常实验所采用的。为此将(2)式和(3)式相加并两边同除2,得可见第一修正项已消除,但第二修正项仍然存在。如按对称测量方法,取左右两个衍射角的平均值,计算波长等物理量应该用公式(5),而不能简单地把(Φk+Φ'k)当作Φk代人(1)式计算。比如波长几的计算,若不计第二修正项,则有因此,平行光不垂直入射引起波长测量的相对误差为其相对误差完

5、全由人射角θ决定,与衍射级次k和衍射角Φk无关,而且对不同光栅,第二修正项误差都一样。其误差随人射角θ改变的理论计算结果如图2所示。图2光栅放置未能使平行光垂直入射引起的误差我们在JJY型(测量精度为δ=1',光栅常数d=1/300mm,待测光波长λ=589.3nm)分光计上进行了测量,测量结果以散点形式在图2上标出,测量误差与理论计算误差相一致。当人射角θ=2°时,理论计算误差为0.061%,实验测定误差为0.11%;人射角θ=4°时理论计算误差为0.24%,实验测定误差为0.26%;人射角θ=30°时,理论计算误差为15%,实

6、验测定误差为14%;理论计算和实验测量结果都表明,当不垂直而偏离的角度较小时(θ<2°),这部分误差较小而可以忽略;如果偏离角度大时,测量误差会显著增加。因此通常的对称测量方法并非是最佳的实验方案。考虑(2)式,注意到衍射级次k和衍射角Φk与入射角θ有关,经过简单的数学证明可知,对于一定的衍射级次k,当θ=Φk/2时,dΦk/dθ=0,而且d2Φk/dθ2>0,因此存在一个最小衍射角Φkmin,此时光栅方程简化为仅供学习与交流,如有侵权请联系网站删除谢谢5精品好文档,推荐学习交流正如找三棱镜最小偏向角一样,可以通过实验方便地测量出

7、这一最小衍射角。即首先把望远镜的十字叉丝对准某一衍射级次的谱线,转动载物台带动光栅作微小转动,在望远镜中可见到光谱线跟随着光栅转动而移动,由此可确定最小衍射角的截止位置,记下此时的读数Φ1,然后取走光栅,将望远镜对准平行光管,记下此时的读数Φ2,则Φkmin=

8、Φ2-Φ1

9、。与通常的测量方法一样,只需两次读数就能测出波长等物理量,而且消除了第一、第二修正项引起的误差。因此,测量光栅最小衍射角,由方程(8)进行波长、分辨率等物理量的计算,不仅消除了一阶、二阶修正项引起的误差,而且还有另外一个优点,即增加光栅的衍射级次k,如实验室常用

10、光栅,用对称测量法一般只能观测到二级衍射条纹,采用最小衍射角法,则能方便地观则到四级衍射条纹,因而增加Φkmin值,减少读数引起的相对误差,从而有效地提高测量精度。图3最小衍射的测量3结束语光栅衍射实验是测量精度比较高的普通物理实验,以波长测量为例

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。