欢迎来到天天文库
浏览记录
ID:60748392
大小:485.50 KB
页数:11页
时间:2020-12-13
《《数字图像处理技术课程设计报告》.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《数字图像处理技术》课程设计报告设计题目:车牌识别系统班级:数媒姓名:学号:一、一、目的与要求1、提高分析图像处理问题的能力,进一步巩固在《数字图像处理技术》课程中所掌握的基本原理与方法。2、掌握并使用一门计算机语言,进行数字图像处理的应用设计。二、设计的内容1、主要功能:牌照图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等。2、系统工作的原理以及过程:图像的输入预处理区域搜索与分割字符分割归一化字符特征提取单字识别(1)当行驶的车辆经过时,触发埋设在固定位置的传感器,系统被唤醒处于工作状态;一旦连接摄像头光快门的光电传感器被触发,设置在车辆前
2、方、后方和侧面的相机同时拍摄下车辆图像;(2)由摄像机或CCD摄像头拍摄的含有车辆牌照的图像通视频卡输入计算机进行预处理,图像预处理包括图像转换、图像增强、滤波和水平较正等;(3)由检索模块进行牌照搜索与检测,定位并分割出包含牌照字符号码的矩形区域;(4)对牌照字符进行二值化并分割出单个字符,经归一化后输入字符识别系统进行识别。三、总体方案设计车牌识别的最终目的就是对车牌上的文字进行识别。主要应用的为模板匹配方法。因为系统运行的过程中,主要进行的都是图像处理,在这个过程中要进行大量的数据处理,所以处理器和内存要求比较高,CPU要求主频在600HZ及以上,内存在
3、128MB及以上。系统可以运行于Windows98、Windows2000或者WindowsXP操作系统下,程序调试时使用matlab。1、功能模块的划分:(1)预处理及边缘提取:图象的采集与转换,边缘提取。(2)牌照的定位和分割:牌照区域的定位,牌照区域的分割,车牌进一步处理。(3)字符的分割与归一化:字符分割,字符归一化。(4)字符的识别2、具体功能实现的原理以及流程图:1、预处理及边缘提取输入车牌图像灰度校正平滑处理提取边缘预处理及边缘提取流程图(1)图象的采集与转换:考虑到现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底
4、白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色B通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。因为蓝色(255,0,0)与白色(255,255,255)在B通道中并无区分,而在G、R通道或是灰度图象中并无此便利。同理对白底黑字的牌照可用R通道,绿底白字的牌照可以用G通道就可以明显呈现出牌照区域的位置,便于后续处理。原图、灰度图及其直方图见图2与图3。对于将彩色图象转换成灰度图象时,图象灰度值可由下面的公式计算:G=0.110B+0.588G+0.302R(1)G=(2)原图和灰度直方图2、边
5、缘提取:边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是很有必要的。增强图象对比度度的方法有:灰度线性变换、图象平滑处理等。3、牌照的定位和分割:牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。由于牌照图象在原始图象
6、中是很有特征的一个子区域,确切说是水平度较高的横向近似的长方形,它在原始图象中的相对位置比较集中,而且其灰度值与周边区域有明显的不同,因而在其边缘形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割。对图像进行腐蚀去除杂质通过计算寻找X、Y方向车牌区域完成车牌定位对分割出的车牌做进一步处理(1)牌照区域的定位牌照图象经过了以上的处理后,牌照区域已经十分明显,而且其边缘得到了勾勒和加强。此时可进一步确定牌照在整幅图象中的准确位置。腐蚀后图像平滑图像的轮廓从对象中移除小对象后图像(2)牌照区域的分割对车牌的分割可以有很多种方法,本程序是利用车牌的彩色信息的
7、彩色分割方法。根据车牌底色等有关的先验知识,采用彩色像素点统计的方法分割出合理的车牌区域,确定车牌底色蓝色RGB对应的各自灰度范围,然后行方向统计在此颜色范围内的像素点数量,设定合理的阈值,确定车牌在行方向的合理区域。然后,在分割出的行区域内,统计列方向蓝色像素点的数量,最终确定完整的车牌区域。行方向区域和最终定位出来的车牌(3)车牌进一步处理:裁剪出来的车牌的进一步处理过程图4:字符的分割与归一化[m,n]=size(d),逐排检查有没有白色像素点,设置1<=j8、大小,设置一阈值,检测图像的X轴,若宽
8、大小,设置一阈值,检测图像的X轴,若宽
此文档下载收益归作者所有