欢迎来到天天文库
浏览记录
ID:6071912
大小:27.50 KB
页数:6页
时间:2018-01-02
《在中学数学解题教学中如何培养学生解题、思维、综合应用能力》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、在中学数学解题教学中如何培养学生解题、思维、综合应用能力 【摘要】数学的解题教学是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。【关键词】中学数学;解题能力;思维能力;综合运用能力作为中学数学教师,要善于解题分析和解题研究,解题能力的高低是衡量教师业务水平的重要杠杆,数学是一门应用性和变化性较强的学科,作为教者,“授之以鱼,不如授之以渔”,我们在日常的教学中应着力培养学生的解题能力,解题
2、能力。表现为发现问题的敏锐洞察能力、分析问题的清晰思维能力以及解决问题的综合运用能力,如何培养学生这三方面能力,我将结合具体的教学实践,谈谈自己的一些想法。一、发现问题的敏锐洞察能力6数学解题活动要求我们在短时间内灵光一现,思维联系到最大的可能性上,从而达到对数学问题本质的领悟,当然,洞察能力的培养,需要在平时的课堂教学中,把握好每一个机会,逐步地进行渗透。1.在新授课课堂教学中,对于新知识的提出,不能一味地平铺直叙,直接灌输给学生,要懂得把握时机,培养发现问题的能力,如函数奇偶性一课中,在引入课题时。有些教者会说:“本
3、节课我们一起来研究一下函数的另外一个性质――函数的奇偶性”;有些教者则会这样来设计,在屏幕上投影出一些轴对称图形,譬如蝴蝶、奥运五环、京剧脸谱等,师:“请大家观察这些生活中图形,归纳出它们的特点,”生:“是轴对称图形,”师:“对,事实上。生活中的对称图形、对称符号丰富多彩,十分美丽,这一章我们学习的是函数,函数的图像是一种图形,当函数的图像也是对称图形时,我们如何利用函数来刻画函数图像的几何特征呢?这就是本节课我们要共同探究的课题――函数的奇偶性,”比较这两种方法,前者过于平淡,学生仅是被动地接受了知识,却没有将知识生活
4、化;而第二种做法,弥补了这些缺陷,从生活中发现数学问题,易于学生在头脑中形成对函数奇偶性本质的认识,更利于提高学生从生活中发现问题的能力。62.在习题课课堂教学中,要精选题目,做到少而精,譬如,两角和与差的三角函数习题课中,有一类题型,给出某些角的三角函数,求与其相关的角的三角函数,选择这道题目:已知cosa=1/7,COS(a+β)=-11/14,且a,β∈(0,π/2,求cosβ,这道题目学生会直接利用两角和的余弦公式,再结合同角三角函数的平方关系加以解决,但随着解题的深入,学生会发现运算很复杂,很难算出答案,这个时
5、候,教师可以引导学生,重头分析题目,观察要求角和已知角的关系,这时候学生会发现β=(a+β)-a,从而求cosβ只需要利用两角差的余弦公式将其带人,很快就解决了这道题目,通过这道题目,学生能感受到解题的关键在于将要求角用已知角表示出来,当然,学生从之前的思维受阻,到后来的柳暗花明,也加深了学生对这类题型的理解,所以,在平时的教学中,在例题的选取上,要做到精选精练精讲,提高教学的效率。二、分析问题的清晰思维能力解决数学问题的过程就是在题目的已知条件和待求结论中架立起联系的桥梁,也就是在分析题目中的已知与待求之间差异的基础上
6、,化归和消除这些差异,那么一道数学问题,我们应该从何入手进行分析呢?1.理解题意,明确目标――解题的起点,审题的关键是分析隐含条件,寻求已知和未知之间联系,从而达到对问题本质的理解,利用知识体系中相应的知识块解决问题。2.探索思路,制订计划――解题的关键,这个过程需要运用学生对数学基础知识掌握的熟练程度、理解程度6和数学方法的灵活应用能力来实现,即利用现有的知识结构、文化修养紧扣数学有关基础知识与基本技能,认真思考,寻找已知和未知的种种联系,并结合严谨的逻辑思维能力来寻求解决当前问题的步骤,探索解决问题的各种方法。如果把
7、解题过程比做一场战役,那么解题者的“兵器”就是数学基础知识和数学方法,而分析问题的思维过程正是“兵法”,“兵法”是战役胜利的关键,所以在解题中,我们要着力培养分析问题的能力。三、解决问题的综合运用能力数学学科的特点是变化性强,考题往往涉及多个知识点,所以要从不同层次、不同角度、不同方向对问题进行分析,活跃思维,逐步完善自身的思维体系,这一能力的培养,主要可以从以下几方面入手。1.一题多解,拓宽思路6譬如,二次函数的解析式有:一般式、顶点式、两点式,例题为:已知二次函数的对称轴为x=2,最大值为3,与x轴的一个交点为(-5
8、,0),求抛物线的解析式,学生从给出的条件,选择利用顶点式来解决,日常教学,我们会认为学生对这i种形式的适用范围已经掌握了事实上,我们错过了提高的最好机会,无异于“入宝山而空返”,如果此刻我们继续引导,并给出提示(对称轴为直线x=2和与x轴的一个交点为(-5,0)的条件,我们还可以得出什么呢?),让学生进行分析,看看
此文档下载收益归作者所有