最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc

最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc

ID:60501902

大小:96.00 KB

页数:13页

时间:2020-12-07

最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc_第1页
最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc_第2页
最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc_第3页
最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc_第4页
最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc_第5页
资源描述:

《最新采用聚类分析的数据挖掘技术进行电信市场客户分群备课讲稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、作者:苏宁军  引言随着国内电信市场竞争的日趋激烈,电信运营商的经营模式逐渐从“技术驱动”向“市场驱动”、“客户驱动”转化。面对客户的多样化、层次化、个性化的需求,大众化营销已经失去了其优势,基于客户信息、客户价值和行为,深入数据分析的洞察力营销、精确化营销的理念逐渐被各大电信运营商所接受,并渴望通过从数据中挖掘价值来减少营销成本、提高营销效益。近几年迅速崛起的数据挖掘技术成为实现这些目标的必要手段。 数据挖掘是从海量数据中提取隐含在其中的有用信息和知识的过程。电信各运营支撑系统所积累的海量历史数据是企业的一笔宝贵财富,谁能正确地挖掘与分析隐含在数据中的知识,谁就能更好地向用户提供产品与

2、服务,从而在竞争中脱颖而出。数据挖掘提供了从数据到价值的解决方案:“数据+工具+方法+目标+行动=价值”。数据挖掘目前已有一系列应用:分类分析、聚类分析、预测分析、偏差分析、关联分析和时序模式等,这些应用涉及到的技术和工具各不相同,然而却可以依据统一的方法论来实行,并可以协同作战,解决许多有价值的商业问题。由SPSS、NCR和Daimler-Benzd在1996年提出的CRISP-DM方法论是国际上数据挖掘行业流行的标准,其成功之处在于源于实践,是实际数据挖掘项目的智慧和经验的结晶。CRISP-DM定义了数据挖掘项目的标准化流程,如图1所示。 图1 CRISP-DM方法论 准确的细分市

3、场和差异化的营销策略是目前电信企业市场营销所必须面对的难题。所谓市场细分是指营销者根据顾客之间需求的差异性,把一个整体市场划分为若干个消费者群的市场分类过程。由于顾客对电信产品需求的多样性、变动性以及电信企业资源的有限性,电信企业在进行市场营销过程中,必须进行市场分析,选择目标市场,做出市场定位,并结合目标市场的特点和结构制定有针对性的市场营销策略。客户分群是了解客户进行市场细分和目标市场营销的前提。数据挖掘的分类和聚类的方法都可应用于客户分群。下面我们将对用聚类方法进行客户分群的实现模式进行详细阐述,为电信目标市场营销的客户分群提供完整的解决方案,并以实际案例验证其可行性。 基于聚类分

4、析的客户分群 聚类(clustering)是指把一组个体按照相似性归成若干类别,即“物以类聚”,其目的是使得属于同一类别的个体之间的相似度尽可能大,而不同类别的个体之间的相似度尽可能小。相似度是根据描述对象的属性来测算的,距离是经常采用的度量方式。聚类和分类有着很大的区别:分类时,我们总是事先知道哪些属性是重要的,运营商总是将重要的、有影响力的属性作为分类的依据;而聚类时,运营商事先根本不知道哪些属性起作用,任务之一就是要找到那些起关键作用的属性。聚类分析能够帮助我们发现特征迥异的不同客户群,和对客户分群起关健作用的指标变量,并辅助运营商对各客户群的特征进行深刻洞察。 1.客户分群的商业

5、理解 依据CRISP-DM流程首先要进行客户分群的“商业理解”,这一初始阶段集中在从商业角度理解项目的目标和要求,然后把理解转化为数据挖掘问题的定义和一个旨在实现目标的初步计划。我们必须明确项目的商业目标,这个目标应该是适于用基于聚类分析的客户分群方法去达到的。比如某电信运营商定义的客户分群的商业目标是“对某市数十万公众客户,从价值和行为的分析维度进行客户分群,以了解不同客户群的消费行为特征,为发展新业务、流失客户保有、他网用户争夺的针对性营销策略的制订提供分析依据,并实现企业保存量、激增量的战略目标”。电信客户从营销属性分为三类:公众客户、商业客户和大客户,其中公众客户消费行为有较大的

6、随机性,客户分布难有规律可寻,比较适于聚类分析。我们可以将此商业目标转化为数据挖掘的可行性方案:从价值和行为维度,考察客户业务拥有与使用、消费行为变化、他网业务渗透等方面属性,采用聚类分析的数据挖掘技术对研究的目标客户(公众客户、入网时长、地域属性、产品拥有类型等方面限定)进行客户分群,对各客户群进行特征刻画和属性分析,为针对性营销确定目标客户群,并根据客户群属性和营销目标量体裁衣制订恰当的营销方案。由于客户的特性是不断变化的,数据挖掘的分析结果具有一定时效性,因此数据挖掘必须以项目来实施,在目标、进度和资源安排上明确要求。 2.2客户分群的数据理解 “巧妇难为无米之炊”,数据是挖掘的基

7、础,在确定目标和方案后需要进行“数据理解”,以确定要支持我们的分析目标需要哪些方面的数据,数据基础是否已经具备,数据质量是否能满足要求,如果不能得到肯定的答复,我们建议推迟项目实施直至条件成熟,因为“进去的是垃圾出来的仍是垃圾”,错误的分析结果可能会给我们带来重大的损失。比如在上述案例中,我们分析了各业务系统及企业数据仓库中客户信息、客户消费及购买使用行为三个方面最近六个月的历史数据。电信企业拥有业务受理开通的CRM系统,进行计费、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。