欢迎来到天天文库
浏览记录
ID:6034097
大小:29.50 KB
页数:7页
时间:2017-12-31
《数学史融入初中数学教学应用尝试》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、数学史融入初中数学教学应用尝试 【摘要】在中学数学教学中,尝试把数学史融入数学教学,将数学内容及概念重新还原到它们相对应的历史中,让学生知道数学概念、数学方法等数学知识的来龙去脉,领略重要的数学思想,帮助学生加深对数学概念、方法和思想的理解,激发学生学习数学的兴趣.【关键词】数学史;概念;无理数;勾股定理数学在大多数人的眼中是一堆数字和公式,抽象、枯燥乏味、深奥甚至神秘的.许多学生觉得数学太难,即使有些学生在数学考试中取得好成绩,也只是为了考试而学数学,并不是出于对数学的喜爱.对于中下层学生的数学成绩更是总成绩的瓶颈,如何
2、改变这种不良的状况,激发学生学习数学的兴趣呢?经过一段时间的尝试,笔者认为在平时的教学中,将数学内容及概念重新还原到它们相对应的历史中,让学生知道数学知识的来龙去脉,领略重要的数学思想,理解数学是如何“好玩”,如何“有用”,引导学生喜爱数学,提高学生学习数学的兴趣,那么就能较好地掌握知识.数学史是研究数学概念、数学方法和数学思想起源与发展、及其与社会、经济和一般文化联系的一门学科,它反映了数学发展的脉络与本质.数学史融入课堂教学可以活跃学习氛围,7激发学生学习的兴趣,数学史家M·克莱因十分强调数学史对数学教育的重要价值,认为
3、“每一位中学和大学数学教师都应该知道数学史,有许多理由,但最重要的一条理由或许是:数学史是教学的指南”.在克莱因眼里,数学史的重要程度可谓无以复加.克莱因坚信,历史上数学家曾经遇到过的困难,课堂上,学生同样会遇到,因而历史对于课堂教学具有重要的借鉴作用.在新课程改革中,《义务教育课程标准(实验)》强调“数学课程应当适当地反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学的推动作用,数学的思想体系,数学的美学价值,数学家的创新精神.数学课程应帮助学生了解数学在人类发展史中的作用,逐步形成正
4、确的数学观”.但当代的数学教育尚未真正发掘数学史的教育功能,也没有充分发挥数学史家的重要作用.《义务教育课程标准(实验)》对具体的应用也并未提及,这标志着虽然数学史对数学教育的意义已被认可和接受,但缺乏具体的细化工作和实践经验的总结.因此,只能靠各教育工作者进行摸索,于是笔者在初中课改实验教学中对数学史融入课堂教学进行了一些尝试.案例一:“天外来客”——关于无理数的发现七年级在“实数”的学习安排中,引入了无理数的概念,用探究的方式得到一系列无理数,7但自始至终学生都不知道为什么会有无理数的产生,它的产生有什么意义,因此在课堂
5、上尝试把数学史上的一个惨案故事穿插在探究中:古希腊的毕达哥拉斯因发现毕达哥拉斯定理而闻名,也因这定理狼狈万分.毕达哥拉斯学派认为:“万物皆数”,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传,但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死,希伯斯连忙外逃,然而还是被抓住了,扔入了大海,为科学的发展献
6、出了宝贵的生命.希伯斯发现的这类数,它是无限不循环小数,被称为无理数.无理数的发现,导致了第一次数学危机,也为数学的发展作出了重大贡献.无理数的发现也告诉我们:每一个重要的概念的形成和发展,都有着丰富的经历,都充满着人类探索的情意成分和对真理不懈追求的精神.也就是说,“在形式化的数学概念这一‘冰冷的美丽’里面蕴含着人类探索的‘火热的思考’,数学概念形成过程中蕴含着丰富的生活含义”.数学概念绝不是生来就枯燥乏味的,相反,它是生动的.因此,在概念教学中,教师可以从数学概念发展史的过程中,借鉴对教学有价值的内容,充分调动学生头脑中
7、相关的知识经验和生活经验,“再创造”的生成概念.7案例二:送给外星人看——勾股定理勾股定理是几何学中的明珠,充满魅力.它不仅是最古老的数学定理之一,也是历史上证法最多的定理之一,几千年来,人们已经发现了400多种不同的证明方法,足以编成厚厚的一本书.初中教材把它安排在八年级学习,结合毕达哥拉斯的传说故事作为引入,较好地提高了学生学习的兴趣.笔者也经常顺带一句:毕达哥拉斯在公元前550年左右发现这个定理时,宰杀了百头牛以感谢神的默示,因此勾股定理在国外也被称为毕达哥拉斯定理或百牛定理.一般学生会在惊讶中更快地投入故事中,想看看
8、到底什么结论值得如此大肆庆祝.于是自然的过渡到定理的探究猜想证明中.(课前要求学生收集有关勾股定理的证明方法,通过阅读资料交流学习)勾股定理:如果直角三角形的两直角边长为a,b,斜边长为c,那么a2+b2=c2.刘徽证法.三国时代魏国的数学家刘徽所提出的方法相当巧妙.在魏景元四年(即公元2
此文档下载收益归作者所有