欢迎来到天天文库
浏览记录
ID:6005903
大小:1.67 MB
页数:10页
时间:2017-12-30
《控制系统的极点配置设计法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、控制系统的极点配置设计法一、极点配置原理1.性能指标要求;当Δ=0.02时,。当Δ=0.05时,2.极点选择区域图3.22系统在S平面上满足时域性能指标的范围主导极点:3.其它极点配置原则系统传递函数极点在s平面上的分布如图(a)所示。极点s3距虚轴距离不小于共轭复数极点s1、s2距虚轴距离的5倍,即(此处,对应于极点s1、s2);同时,极点s1、s2的附近不存在系统的零点。由以上条件可算出与极点s3所对应的过渡过程分量的调整时间为式中是极点s1、s2所对应过渡过程的调整时间。(a)(b)系统极点的位置与阶跃响
2、应的关系图(b)表示图(a)所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s1、s2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s3、s4、s5所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器
3、)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。(a)(b)图1磁悬浮轴承系统的工作原理Fig.1Themagneticsuspensionbearingsystemprincipledrawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因
4、此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚度、阻尼及稳定性主
5、要是由控制规律决定。实际的磁悬浮轴承系统中,在某个坐标方向上,通常是对称于转子布置两个结构及参数完全相同而作用相反的电磁铁,由这两个电磁铁共同作用产生磁悬浮力将转子悬浮在平衡位置,如图1(b)所示。2.磁悬浮轴承的开环控制模型2.1磁悬浮轴承的控制模型1.磁悬浮力方程由图1(b)求磁悬浮轴承的单边子系统电磁铁对转子产生的磁悬浮力,可根据法拉第电磁力公式近似表示为(1)式中,为真空磁导率,为线圈匝数,为铁心与气隙的横截面面积,为电流,为气隙大小.设转子处于平衡位置时的气隙为,当转子离开平衡位置向电磁铁方向产生偏移
6、量,则通过减小流进绕组的电流来调节使转子回复到平衡位置,把电流表示成。在转子位移变化很小(x<7、感值。由式(9)的第一式加上第二式可得整个串联线圈绕组的端电压为(6)其拉氏变换为:(7)式中,为转子在平衡位置时绕组的电感。3.转子运动方程根据牛顿第二定律得球形转子沿x方向运动的运动方程为(8)式中,为球形转子的质量;为电磁悬浮力以外的扰动作用。将上式进行拉普拉斯变换得:(9)式(3)、式(7)以及式(9)即为描述通风机磁悬浮轴承系统动力学特性的数学模型。不考虑干扰情况下,由它们得输入绕组电压信号到输出转子径向位移信号的开环系统传递函数为:(10)由上式可知,开环系统存在S复平面上的右极点,故系统不可能稳定8、。要使其稳定,必须采用反馈控制对系统进行闭环控制。3.磁悬浮轴承的闭环控制1.系统控制策略及闭环传递函数1)控制框图及闭环传递函数由(10)式可知,要使系统稳定,必须对系统进行综合校正。本文采用PD控制策略对系统进行串联校正,图2为PD控制风机磁悬浮系统框图。图2磁悬浮轴承系统的PID控制系统框图(11)由上式得系统的特征方程为(12)欲使系统满足稳定性要求,由特征方程解出来的特征根必
7、感值。由式(9)的第一式加上第二式可得整个串联线圈绕组的端电压为(6)其拉氏变换为:(7)式中,为转子在平衡位置时绕组的电感。3.转子运动方程根据牛顿第二定律得球形转子沿x方向运动的运动方程为(8)式中,为球形转子的质量;为电磁悬浮力以外的扰动作用。将上式进行拉普拉斯变换得:(9)式(3)、式(7)以及式(9)即为描述通风机磁悬浮轴承系统动力学特性的数学模型。不考虑干扰情况下,由它们得输入绕组电压信号到输出转子径向位移信号的开环系统传递函数为:(10)由上式可知,开环系统存在S复平面上的右极点,故系统不可能稳定
8、。要使其稳定,必须采用反馈控制对系统进行闭环控制。3.磁悬浮轴承的闭环控制1.系统控制策略及闭环传递函数1)控制框图及闭环传递函数由(10)式可知,要使系统稳定,必须对系统进行综合校正。本文采用PD控制策略对系统进行串联校正,图2为PD控制风机磁悬浮系统框图。图2磁悬浮轴承系统的PID控制系统框图(11)由上式得系统的特征方程为(12)欲使系统满足稳定性要求,由特征方程解出来的特征根必
此文档下载收益归作者所有