欢迎来到天天文库
浏览记录
ID:59927885
大小:2.37 MB
页数:32页
时间:2020-11-28
《过程控制第六章大时滞过程控制系统教学文案.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、过程控制第六章大时滞过程控制系统时滞现象在工业生产过程中是普遍存在的。时滞可分为两类,一类称为纯时滞,如带式运输机的物料传输、管道输送、管道混合、分析仪表检测流体的成分等过程;另一类为惯性时滞,又称为容积时滞。该类时滞主要来源于多个容积的存在,容积的数量可能有几个甚至几十个,如分布参数系统可以理解为具有无穷多个微分容积。因此,容积越大或数量越多,其滞后的时间就越长。由于时滞的存在,使得被控量不能及时反映系统所承受的扰动,即使测量信号到达调节器,执行机构接受控制信号后立即动作,也需要经过时滞以后,才
2、能波及到被控量,使其受到控制。因此,这样的过程必然会产生比较明显的超调量和比较长的调节时间。所以具有时滞的过程被公认为比较难以控制的过程。其难控程度随着时滞占整个过程动态份额的增加而增加。一般认为时滞与过程的时间常数之比大于0.3时,则认为该过程是具有大时滞的过程。当增加时,过程中的相位滞后也随之增加,使以上现象更为突出。有时甚至会因为超调严重而出现停产事故;有时则可能引起系统的不稳定,被调量超过安全极限而危及设备及人身安全。因此,大时滞过程的控制问题一直是倍受人们关注的重要研究课题。6.1大时滞
3、过程概述几个典型的大时滞工业过程实例:如图6-1所示,钢板冷轧过程是一个典型的含有纯时滞的工业过程。通过五次辊压,将80mils(密耳,)轧成厚度为9mil(约0.2285mm)的薄板。一台X光测厚仪检测第一轧辊轧出的厚度,作为调节器的反馈信号,调节器控制第一对轧辊的压力。从轧辊到X光测厚仪检测点大约6ft(约1828.8mm)。根据轧制速度的变化,折合纯时滞时间的变化范围为0.5~5s。在最后一个轧辊后,X光测厚仪检测钢板最后的厚度作为第二个调节器的反馈信号,控制最后一个轧辊的压力。从最后一个轧
4、辊到测厚点的距离也是6ft,对应的纯滞后时间为0.05―0.5s。图6-1钢板冷轧过程示意图6.1大时滞过程概述图6-2粘性液体混合过程示意图另一个具有纯时滞的过程是图6-2所示的粘性液体混合过程。将两种具有不同粘度的油料混合在一起,在出口处产生所需粘稠度的油料。出口处的粘稠度自动检测,调节器调节输送泵的速度校正粘稠度与设定值的偏差。在泵和出口之间存在着过量的纯时滞。6.1大时滞过程概述啤酒发酵过程示意图如图6-3所示。在酵母繁殖的生物化学反应过程中,会释放大量的热量。为了实现罐内温度的时间程序控
5、制、以保证啤酒质量,通常采用冷媒对罐体进行冷却,使罐内温度按照工艺要求的曲线变化。由于罐体比较高,一般将发酵罐分成上、中、下三段进行冷却。三只调节阀分别控制上、中、下三套缠绕在罐壁之外的盘管状热交换器(又称为螺旋状冷带)内冷媒的流量,以控制其带走热量的多少,从而达到控制罐内温度的目的。由于罐子的半径很大,罐壁与罐子中央的温差较大。罐壁温度最低,罐中央的温度最高。虽然,在生化放热反应过程中,罐内啤酒会不断地进行着缓慢的热循环流动,但在热传递的过程中,罐内任何一点都存在着以该点半径描述的等温柱面层。因
6、此,啤酒发酵过程是一个分布参数过程,具有无穷多个微分容积。发酵罐越大,其惯性滞后的时间越长。6.1大时滞过程概述图6-3啤酒发酵过程示意图6.1大时滞过程概述图6-4巴氏灭活过程示意图图6-4是巴氏灭活过程示意图。系统由带夹套的灭活罐、热水箱、热水循环管、热水循环泵及电加热器等组成。灭活过程是保持罐内的制品在某一恒定的温度下若干个小时,以保证制品内的细菌均被杀死。灭活罐内安装了搅拌器,使制品在灭活过程中得到充分而均匀的搅拌。因此,灭活罐可以认为是集中参数过程。热水箱内虽然有热水自动循环及循环泵的作
7、用,但热水箱内热水的温度仍然不均匀,故热水箱是一个分布参数过程。考虑到热水箱和灭活罐的热惯性,以及管道的纯时滞,巴氏灭活过程是一个具有纯时滞及惯性时滞的高阶复杂工业过程。6.1大时滞过程概述1.微分先行控制方案微分作用的特点是能够按被控参数的变化速度来校正被控参数的偏差,它对克服超调现象起到很大的作用。但是,对于图6-5所示的PID控制方案,微分环节的输入是对偏差作了比例积分运算后的值。图6-5PID控制方案对于大时滞过程的控制若采用串级控制和前馈控制等方案是不合适的。必须采用特殊的控制(补偿)方
8、法。下面介绍两种能够在一定程度上解决惯性时滞的常规控制方案,并将它们与PID控制作对比。6.2常规控制方案图6-6微分先行控制方案在图6-6所示的微分先行控制方案中,微分环节的输出信号包括了被控参数及其变化速度的信息,将它作为测量值输入到比例积分调节器中,使得系统克服超调的作用加强了。因此,实际上微分环节不能真正起到对被控参数变化速度进行校正的目的,克服动态超调的作用是有限的。如果将微分环节更换一个位置,如图6-6所示,则微分作用克服超调的能力就大不相同了。这种控制方案称为微分先行
此文档下载收益归作者所有