浅议二次函数在高中数学中应用

浅议二次函数在高中数学中应用

ID:5959171

大小:25.00 KB

页数:4页

时间:2017-12-29

浅议二次函数在高中数学中应用_第1页
浅议二次函数在高中数学中应用_第2页
浅议二次函数在高中数学中应用_第3页
浅议二次函数在高中数学中应用_第4页
资源描述:

《浅议二次函数在高中数学中应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅议二次函数在高中数学中应用  在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。1进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射f:A

2、→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素x对应,记为f(x)=ax2+bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素x在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知f(x)=2x2+x+2,求f(x+1)这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。4类型Ⅱ:设f(x+1)=x2-4x+1,求f(x)这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素x的象,其本质是求对应法则。

3、一般有两种方法:①把所给表达式表示成x+1的多项式。f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得f(x)=x2-6x+6②变量代换:它的适应性强,对一般函数都可适用。令t=x+1,则x=t-1∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而f(x)=x2-6x+62二次函数的单调性,最值与图象在高中阶段学习函数单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-■]及[-■,+∞)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地

4、利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。①y=x2+2

5、x-1

6、-1②y=

7、x2-1

8、4③y=x2+2

9、x

10、-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ:设f(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出y=g(t)的图象解:f(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=f(t)=t2-2t-1当t1)首先要使学生弄清楚题意,一般地,

11、一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。3二次函数的知识,可以准确反映学生的数学思维类型Ⅴ:设二次函数f(x)=ax2+bx+c(a>0)方程f(x)-x=0的两个根x1,x2满足00,又a>0,因此f(x)>0,即f(x)-x>0。至此,证得xf(0),所以当x∈(0,x1)时f(x)0)4函数f(x)的图象的对称轴为直线x=-■,且是唯一的一条对称轴,因此,依题意,得x0=-■,因为x1,x2是二次方

12、程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-■,∵x2-■4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。