欢迎来到天天文库
浏览记录
ID:59576748
大小:15.50 KB
页数:3页
时间:2020-11-13
《最大公约数的算法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.1、查找约数法.先分别找出每个数的所有约数,再从两个数的约数中找出公有的约数,其中最大的一个就是最大公约数.例如,求12和30的最大公约数.12的约数有:1、2、3、4、6、12;30的约数有:1、2、3、5、6、10、15、30.12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.2更相减损术《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。” 翻译成现代语言如
2、下: 第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。 第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。 则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。 其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。 3、辗转相除法. 当两个数都较大时,采用辗转相除法比较方便.其方法是: 以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数
3、来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数. 例如:求4453和5767的最大公约数时,可作如下除法. 5767÷4453=1余1314 4453÷1314=3余511 1314÷511=2余292 511÷292=1余219 292÷219=1余73 219÷73=3 于是得知,5767和4453的最大公约数是73. 辗转相除法适用比较广,比短除法要好得多,它能保证求出任意两个数的最大公约数.4、求差判定法.
4、 如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公约数就是原来两个数的最大公约数.例如:求78和60的最大公约数.78-60=18,18和60的最大公约数是6,所以78和60的最大公约数是6. 如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公约数就是原来两数的最大公约数.例如:求92和16的最大公约数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公约数是4,所以92和16的最大公约数就是4
5、. 5、分解因式法. 先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公约数. 例如:求125和300的最大公约数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公约数是5×5=25. 6、短除法. 为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公约数就是所有除数的乘积. 例如:求180和324的最大公约数. 因为:5和9互质,所以180和324的最大公约数是4×9=36. 7、除法法.
6、 当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公约数. 例如:求19和152,13和273的最大公约数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公约数是19,13和273的最大公约数是13. 8、缩倍法. 如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的约数为止,这时的商就是两个数的最大公约数.例如:求30和24的最大公约数.24÷4=6,6是
7、30的约数,所以30和24的最大公约数是6.
此文档下载收益归作者所有