欢迎来到天天文库
浏览记录
ID:59555623
大小:1.60 MB
页数:46页
时间:2020-11-10
《直线和椭圆的位置关系(高三复习)复习进程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线和椭圆的位置关系(高三复习)直线与椭圆的位置关系种类:相离(没有交点)相切(一个交点)相交(二个交点)相离(没有交点)相切(一个交点)相交(二个交点)1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到二元一次方程组(1)△>0直线与椭圆相交有两个公共点;(2)△=0直线与椭圆相切有且只有一个公共点;(3)△<0直线与椭圆相离无公共点.通法1直线与椭圆的位置关系例1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?例2.无论k为何值,直线y=kx+2和曲线交点情况满足()A.没
2、有公共点B.一个公共点C.两个公共点D.有公共点D1直线与椭圆的位置关系例2、已知椭圆和直线l:4x-5y+40=0,试推断椭圆上是否存在一点,它到直线l的距离最小?最小距离是多少?OxyFlM方法一:切线法方法二:三角换元法mm设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.弦长公式:2弦长公式如果直线的斜率不存在如何求弦长呢?方法小结2014陕西例4:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.解:韦达定理→斜率韦达定理法:利用韦达定理及中点坐标公式来构造弦中点问题例4:已知椭圆过点P(2,1)引
3、一弦,使弦在这点被平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率.点作差弦中点问题2014江西(抄)此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢
此文档下载收益归作者所有