基于AMESim的A4VG变量泵动态特性分析.doc

基于AMESim的A4VG变量泵动态特性分析.doc

ID:59526701

大小:297.50 KB

页数:7页

时间:2020-11-08

基于AMESim的A4VG变量泵动态特性分析.doc_第1页
基于AMESim的A4VG变量泵动态特性分析.doc_第2页
基于AMESim的A4VG变量泵动态特性分析.doc_第3页
基于AMESim的A4VG变量泵动态特性分析.doc_第4页
基于AMESim的A4VG变量泵动态特性分析.doc_第5页
资源描述:

《基于AMESim的A4VG变量泵动态特性分析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、基于AMESim的A4VG变量泵动态特性分析2011-11-1515:54:54  作者:孙东坡王建明张戈魏海洲  来源:·  本文介绍了对在大吨位履带起重机液压系统中广泛应用的A4VG主泵工作原理及内部结构进行深入分析,建立A4VG主泵详细的AMESim仿真模型,分析动态变化过程中伺服阀芯及排量调节缸的动作过程,实验结果验证了仿真模型的正确性。  0引言  采用先进的数字化样机技术进行产品开发,可以提高产品开发效率、节约成本。重要部件的仿真模型是整机数字化样机的重要组成部分,它的准确与否直接影响整机数字化样机的质量。  A4VG系列泵是德国力士乐公司生产

2、的变量泵,在大吨位履带起重机中得到广泛的应用。本文通过对A4VG250EP4变量泵调节机构的深入分析,结合泵调节机构内部结构建立其AMESim仿真模型,对其动态性能进行仿真分析及实验研究,保证主泵模型的准确。  1A4VG变量泵原理及结构  1.1A4VG泵工作原理  A4VG250EP4变量泵液压原理如图1所示。其由伺服阀、变量调节缸、柱塞、斜盘、单向溢流阀及压力切断阀等组成。其中由伺服阀和变量调节缸等组成的变量调节机构决定了主泵的动态响应。    图1A4VG250EP4变量泵液压原理图  由图1可知,a、b两端比例电磁铁电流的大小决定了伺服阀打开的方

3、向及开口度,通过控制伺服阀开口可以改变变量活塞的位移,进而改变泵斜盘的倾角,达到变量的目的。该系统是力反馈式闭环控制回路,具有结构紧凑,响应快速等优点,且便于远程控制。  1.2A4VG泵内部结构及工作过程  伺服变量机构内部结构图如图2所示,该变量机构主要由两端比例电磁铁、伺服阀芯、杠杆、拨叉及排量调节弹簧缸等组成。    图2伺服变量机构内部结构及工作过程图  其工作过程如图2所示。当右边电磁铁得电时电磁力推动伺服阀芯向左运动打开伺服阀阀口,同时推动拨叉向左张开,此时拨叉上弹簧力与电磁力平衡(如图2(a)示);伺服阀芯的运动使得排量调节弹簧缸右腔与伺服

4、压力相连,在伺服压力的作用下排量调节缸活塞杆向左伸出实现变量,同时在杠杆的作用下推动拨叉进一步向右张开,此时拨叉上弹簧力大于电磁力(如图2(b)示);在弹簧力的作用下拨叉左半边向中闭合,同时推动伺服阀芯复位(如图2(c)示),此时拨叉上的弹簧力与电磁推力平衡,排量调节缸的液压力与弹簧力平衡,排量调节缸的活塞杆稳定在特定伸出位置(即泵稳定工作在某一排量下)直到电流产生变化;当右边电磁铁失电时,在弹簧力的作用下拨叉的左半边推动伺服阀芯向右运动,弹簧恢复至初始长度,使得排量调节缸右腔与T口相连(如图2(d)示);在排量调节缸弹簧力的推动下活塞杆回到初始位置(即泵

5、的排量为0),同时在杠杆的作用下推动拨叉张开(如图2(e)示),此时拨叉上弹簧力大于电磁阀推力;拨叉在弹簧力的作用下复位,同时推动伺服阀芯复位(如图2(f)示)。  由力士乐零部件图册可以得出调节机构内部结构及尺寸。伺服阀结构及尺寸、拨叉各力作用点距离、杠杆各力作用点距离等信息可以由图3得到;排量调节弹簧缸结构及尺寸如图4所示。    图3伺服阀、拨叉及杠杆结构尺寸    图4排量调节弹簧缸结构及尺寸  2A4VG变量泵数字样机模型  根据前文对伺服变量机构工作过程及其结构尺寸的分析,下面在液压仿真软件AMESim中搭建调节机构的仿真模型。  拨叉机构可以

6、用两个杠杆机构模拟,但是在拨叉的任一侧杆上都有三个不同的力作用点(弹簧力作用点、杠杆力作用点和伺服阀力作用点),且拨叉工作时杠杆力和伺服力分别作用于拨叉两侧。为了利用AMESim机械库已有模型简化系统建模,杠杆与拨叉机构需做等效处理,把杠杆与拨叉左右两边的接触点等效到拨叉与伺服阀芯接触点处(等效前后结构如图5示)。这样拨叉的两侧就可以用有两个力作用点的杠杆模拟。    图5杠杆力作用点等效处理前后对比  基于以上分析,利用AMESimHCD库、信号库及机械库元件搭建调节机构系统仿真模型如图6示。端口1为排量调节缸伸出位移量,用于调节柱塞泵斜盘倾角,端口2为

7、伺服压力输入口,端口3、4为比例电磁铁电流输入口。模型中伺服阀、变量缸、杠杆及拨叉等部分结构尺寸均由力士乐零部件图给出。    图6伺服变量机构仿真模型  将伺服变量机构仿真模型作为子模型,搭建A4VG变量泵详细液压仿真模型如图7示。    图7A4VG变量泵详细液压仿真模型  3仿真分析与实验验证  按照图2动作过程,0s时在b端加600MA阶跃电流待调节机构稳定后b端电流变为0,图8、图9分别为伺服阀芯及排量调节油缸位移量变化曲线。    图8伺服阀芯位移变化过程    图9排量调节油缸位移变化过程  由图8可知,在b端电流激励下阀芯先向左运动,并在杠

8、杆拨叉机构的反馈调节作用下回到初始位置,电流消失时,在拨叉弹簧力作

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。