人教版2021年六年级下册数学《第五单元数学广角》教案.doc

人教版2021年六年级下册数学《第五单元数学广角》教案.doc

ID:59518889

大小:47.50 KB

页数:6页

时间:2020-11-05

人教版2021年六年级下册数学《第五单元数学广角》教案.doc_第1页
人教版2021年六年级下册数学《第五单元数学广角》教案.doc_第2页
人教版2021年六年级下册数学《第五单元数学广角》教案.doc_第3页
人教版2021年六年级下册数学《第五单元数学广角》教案.doc_第4页
人教版2021年六年级下册数学《第五单元数学广角》教案.doc_第5页
资源描述:

《人教版2021年六年级下册数学《第五单元数学广角》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、六年级数学科集体备课教案章节:第五章课题:数学广角计划课时:3主备:教学目标:  l、结合生活中熟悉的事物,使学生通过观察、操作、实验等活动,探索、发现简单事物的排列规律。  2、在进行探索、交流活动中,培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。  3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。感受数学学习的乐趣,激发学生对身边事物的好奇心,培养学生初步的数学意识。使学生在数学活动中养成与人合作的良好习惯。教学重点:使学生探索、发现简单事物中的排列规律。教学难点:使学生发现简单事物的

2、排列的规律,培养学生初步的推理能力。教学过程:补充或总结第一课时1.例1教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配

3、到3个文具盒中一共只有四种情况(在这里,只考虑存在性问题,即把4枝铅笔不管放进哪个文具盒,都视为同一种情况)。在每一种情况中,都一定有一个文具盒中至少有2枝铅笔。通过罗列实验的所有结果,就可以解释前面提出的疑问。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“反证法”或“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个

4、文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n+1)枝铅笔放进n个文具盒,总有一个文具盒里至6少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”。学生可以利用例题中的方法迁移类推,加以解释。由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,教学时,可以放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流。除了教材上提供的两种方法以外,还会有其他的方法(如数的分解法),只要

5、是合理的,都应给予鼓励。在此过程中,教师也应给予适当的指导。例如,要使学生明确,这里只需解决存在性问题就可以了。如果有的同学在枚举的时候,给三个文具盒标上序号,把(4,0,0)、(0,4,0)和(0,0,4)理解成三种不同的情况,教师应指出,在研究这一类问题时,作这样的区分是没有必要的。这样的指导有助于培养学生具体情况具体分析的数学思维。教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用

6、一般性的数学方法来思考问题。学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,可以继续提问:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的。通过这样的教学过程,有

7、助于发展学生的类推能力,形成比较抽象的数学思维。第二课时2.例2。本例介绍了另一种类型的“抽屉问题”,即“把多于kn个的物体任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。”实际上,如果设定k=1,这类“抽屉问题”就变成了例1的形式。因此,这两类“抽屉问题”在本质上是一致的,例1只是例2的一个特例。6教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生探究原因的愿望。学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)

8、三种情况。在任何一种结果中,总有一个数不小于3。更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”。利用有余数除法5÷2=2……

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。