资源描述:
《机器人的数学基础ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、提纲2.1位置和姿态的表示2.2坐标变换2.3齐次坐标变换2.4物体的变换及逆变换2.5通用旋转变换1Robotics数学基础2.1位置和姿态的表示1.位置描述在直角坐标系A中,空间任意一点p的位置(Position)可用3x1列向量(位置矢量)表示:2.方位描述空间物体B的方位(Orientation)可由某个固接于此物体的坐标系{B}的三个单位主矢量[xB,yB,zB]相对于参考坐标系A的方向余弦组成的3x3矩阵描述.2Robotics数学基础2.1位置和姿态的表示上述矩阵称为旋转矩阵,它是正交
2、的.即若坐标系B可由坐标系A,通过绕A的某一坐标轴获得,则绕x,y,z三轴的旋转矩阵分别为3Robotics数学基础2.1位置和姿态的表示这些旋转变换可以通过右图推导这是绕Z轴的旋转.其它两轴只要把坐标次序调换可得上页结果.4Robotics数学基础2.1位置和姿态的表示旋转矩阵的几何意义:1)可以表示固定于刚体上的坐标系{B}对参考坐标系的姿态矩阵.2)可作为坐标变换矩阵.它使得坐标系{B}中的点的坐标变换成{A}中点的坐标.3)可作为算子,将{B}中的矢量或物体变换到{A}中.5Robotics
3、数学基础2.1位置和姿态的表示3.位姿描述刚体位姿(即位置和姿态),用刚体的方位矩阵和方位参考坐标的原点位置矢量表示,即6Robotics数学基础2.2坐标变换平移坐标变换坐标系{A}和{B}具有相同的方位,但原点不重合.则点P在两个坐标系中的位置矢量满足下式:7Robotics数学基础2.2坐标变换2.旋转变换坐标系{A}和{B}有相同的原点但方位不同,则点P的在两个坐标系中的位置矢量有如下关系:8旋转矩阵---举例[例1]已知转动坐标系OUVW中的两点aUVW=(4,3,2)T和bUVW=(6,
4、2,4)T,若OUVW系统绕OZ轴转动了60。,试求参考坐标系中的相应点axyz和bxyz。[解]Robotics数学基础9旋转矩阵---举例[例2]已知参考坐标系OXYZ中的两点aXYZ=(4,3,2)T和bXYZ=(6,2,4)T,若OUVW系统绕OZ轴转动了60。,试求转动坐标系中的相应点aUVW和bUVW。[解]Robotics数学基础10合成旋转矩阵:例1:在动坐标中有一固定点,相对固定参考坐标系做如下运动:①R(x,90°);②R(z,90°);③R(y,90°)。求点在固定参考坐标系下
5、的位置。解1:用画图的简单方法Robotics数学基础11解2:用分步计算的方法①R(x,90°)②R(z,90°)③R(y,90°)(2-14)(2-15)(2-16)Robotics数学基础12上述计算方法非常繁琐,可以通过一系列计算得到上述结果。将式(2-14)(2-15)(2-16)联写为如下形式:R3x3为二者之间的关系矩阵,我们令:定义1:当动坐标系绕固定坐标系各坐标轴顺序有限次转动时,其合成旋转矩阵为各基本旋转矩阵依旋转顺序左乘。注意:旋转矩阵间不可以交换Robotics数学基础13旋
6、转次序对变换结果的影响Robotics数学基础14合成旋转矩阵为了表示绕OXYZ坐标系各轴的一连串有限转动,可把基本旋转矩阵连乘起来。由于矩阵乘法不可交换,故完成转动的次序是重要的。例如,先绕OX轴转α角,然后绕OZ袖转θ角,再绕OY转ψ角;表示这种转动的旋转矩阵为如果转动的次序变化为,先绕OY转ψ角绕OX轴转α角,然后绕OZ袖转θ角,再绕OX轴转α角;表示这种转动的旋转矩阵为Robotics数学基础15除绕OXYZ参考系的坐标轴转动外,OUVW坐标系也可以绕它自己的坐标轴转动。这时,合成旋转矩阵可
7、按下述简单规则求得:1.两坐标系最初重合,因此旋转矩阵是一个3×3单位矩阵I3。2.如果OUVW坐标系绕OXYZ坐标系的一坐标轴转动,则可对上述旋转矩阵左乘相应的基本旋转矩阵。3.如果OUVW坐标系绕自己的一坐标铀转动,则可对上述旋转矩阵右乘相应的基本旋转矩阵合成旋转矩阵规则先绕OY轴转ψ角,然后绕OW袖转θ角,再绕OU转α角;表示这种转动的旋转矩阵为Robotics数学基础16Robotics数学基础2.2坐标变换3.复合变换一般情况原点既不重和,方位也不同.这时有:(2-13)17Robotic
8、s数学基础2.2坐标变换例2.1已知坐标系{B}的初始位姿与{A}重合,首先{B}相对于{A}的ZA轴转30°,再沿{A}的XA轴移动12单位,并沿{A}的YA轴移动6单位.求位置矢量APB0和旋转矩阵BAR.设点p在{B}坐标系中的位置为BP=[3,7,0],求它在坐标系{A}中的位置.18开始19一般来说,n维空间的齐次坐标表示是一个(n+1)维空间实体。有一个特定的投影附加于n维空间,也可以把它看作一个附加于每个矢量的特定坐标—比例系数。式中i,j,k为x,y,