深度学习在NLP结构化模型中的应用ppt课件.pptx

深度学习在NLP结构化模型中的应用ppt课件.pptx

ID:59468646

大小:1.27 MB

页数:50页

时间:2020-09-14

深度学习在NLP结构化模型中的应用ppt课件.pptx_第1页
深度学习在NLP结构化模型中的应用ppt课件.pptx_第2页
深度学习在NLP结构化模型中的应用ppt课件.pptx_第3页
深度学习在NLP结构化模型中的应用ppt课件.pptx_第4页
深度学习在NLP结构化模型中的应用ppt课件.pptx_第5页
资源描述:

《深度学习在NLP结构化模型中的应用ppt课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、DeepLearningforStructurePredictioninNaturalLanguageProcessingWenzhePei(裴文哲)PekingUniversityOutlineIntroduction&&MotivationDeepLearningforChineseWordSegmentationDeepLearningforGraph-basedDependencyParsingConclusion&FutureWorkIntroduction&&MotivationIntroduction&&MotivationStructureinNLPInt

2、roduction&&MotivationStructurePredictionKeyComponentsModelforfDecodingIntroduction&&Motivation–…ConventionalModelsforfCRFStructurePerceptronStructureSVM–…DecodingAlgorithmViterbiCKYEisnerIntroduction&&MotivationConventionalModelsforfCRFStructurePerceptronStructureSVM–…DecodingAlgorithmVit

3、erbiCKYEisnerThisishowmostresearcherspublishpapers–…Introduction&&MotivationConventionalModelsLinear(Log-Linear)Feature-basedProsIncorporateknowledgeintostatisticalmodelsEasytoexplainConsToomanyfeaturesmakethemodeltendtooverfitFeaturedesignsometimesrequiresdomainknowledgeIntroduction&&Mo

4、tivationHowaboutDeepLearning?NaïveBayes—>HMMMaximumEntropy—>CRFPerceptron—>StructurePerceptronSVM—>StructureSVMNeuralNetwork—>StructureNeuralNetwork?Inourwork,westudiedtwotasksChineseWordSegmentation(SequenceStructure)DependencyParsing(TreeStructure)DeepLearningforChineseWordSegmentationD

5、eepLearningforCWSChineseWordSegmentation–AtypicalsequencelabelingtaskSSBME我爱天安门DeepLearningforCWSConventionalNeuralNetworkModelsDeepLearningforCWSModelTraining–Mairgupetal.(2013):MLE-styletraining–Zhengetal.(2013):Perceptron-styletrainingDeepLearningforCWSPros:Minimizetheeffortinfeatureen

6、gineeringCons:Hardtocapturecomplex“interactions”betweentagsandcontextsrelyingonlyonhiddenlayers–“Interactions”infeature-basedmodel:DeepLearningforCWSOurwork:Max-MarginTensorNeuralNetworkAmodelthatcan:MinimizetheeffortoffeatureengineeringCapturemoreinteractionsbetweentagsandcontextBeeasily

7、generalizedtoothersequencemodelingtasksMax-MarginTensorNeuralNetworkArchitectureofourmodelTagEmbeddingTensor-basedtransformationTensorFactorizationMax-MarginTensorNeuralNetworkTagEmbeddingMax-MarginTensorNeuralNetworkTensor-basedTransformation–Weusea3-waytensor?,1:?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。