欢迎来到天天文库
浏览记录
ID:59460324
大小:52.00 KB
页数:6页
时间:2020-11-02
《直线与平面垂直的判定公开课教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、公开课教案授课教师学科数学年级高一()班教学方法讲练结合课时一课时时间2015年月日课题直线与平面垂直的判定教学目标知识与技能(1).掌握直线与平面垂直的定义(2).理解并掌握直线与平面垂直的判定定理(3).会判断一条直线与一个平面是否垂直(4).培养学生的空间想象能力和对新知识的探索能力过程与方法(1).加强学生空间与平面之间的转化意识,训练学生的思维灵活性(2).要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加情感、态度及价值观(1).培养学生的探索精神(2).加强学生对数学的
2、学习兴趣重点直线与平面垂直的定义及其判定定理难点直线与平面垂直判定定理的理解教具多媒体、三角形纸片、三角板或直尺学具教材等教学过程教师活动学生活动1.创设情境问题1:空间一条直线和一个平面有哪几种位置关系?设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。问题2:列举在日常生活中你见到的可以抽象成直线与平面相交的事例?寻找特殊的事例并引入课题。设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起
3、进一步探究直线与平面垂直的意义。2.提炼定义学生回答问题教学过程问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意
4、一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念。(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)设计意图:通过对问题(1)的辨析讨论,深化直线与平
5、面垂直的概念。通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去学生回答问题并叙述学生思考问题、讨论教学过程一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。3.探究新知创设情境 猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚
6、不在同一直线上)。如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理。师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触) 问题4:(1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在的平面垂直? (组织学生动手操作、探究、确认)设计意图:通过折纸让学生发现当且仅当折痕A
7、D是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系学生猜想定理,(教师提示)学生动手操作、探究教学过程考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线m,n,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD
8、(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。 问题6:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?设计意图:让学生明白要
此文档下载收益归作者所有