工业废水处理中氨氮处理技术

工业废水处理中氨氮处理技术

ID:5945802

大小:31.50 KB

页数:8页

时间:2017-12-29

工业废水处理中氨氮处理技术_第1页
工业废水处理中氨氮处理技术_第2页
工业废水处理中氨氮处理技术_第3页
工业废水处理中氨氮处理技术_第4页
工业废水处理中氨氮处理技术_第5页
资源描述:

《工业废水处理中氨氮处理技术》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、工业废水处理中氨氮处理技术  摘要工业废水中的氨氮处理是制约行业发展的因素之一,过量氨氮排入水体将导致水体富营养化,经济有效的控制氨氮废水污染也成为当前环保工作者和行业研究的重要课题,目前采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。本文对各种氨氮废水处理方法的优缺点进行分析汇总。关键词氨氮废水处理技术中图分类号:[F287.2]文献标识码:A文章编号:8工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种

2、类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。由此而产生的氨氮废水也成为行业发展制约因素之一;过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。近年来我国海域不断发生赤潮,氨氮是污染的重要原因之一。因此,经济有效的控制氨氮废水污染也成为当前环保工作者研究的重要课题,也是企业迫切需要解决的难题。废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前

3、采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。本文对各种氨氮废水处理方法的优缺点进行分析汇总。1生物硝化与反硝化(生物除氮法)1.1生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计)7.lg。影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下

4、降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2,或>2;(4)溶解氧8氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L

5、以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。1.2生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:6NO3-十2CH3OH→6NO2-十2CO2十4H2OY_Qb

6、Y4w~06NO2-十3CH3OH→3N2十3CO2十3H2O在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即”内碳源”,但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。8生物处理法中,一般采用的A/

7、O法、A2/O法、SBR序批处理法等对脱氮具有一定效果的工艺技术,一般处理的废水氨氮含量不能超过300mg/L,同时,为了实现脱氮的目的,必须补充相应的碳源来配合实现氨氮的脱除,使运行费用有很大的增加,氨氮废水来源多,排放量大,采用经济有效的技术实现处理要求迫在眉睫。近年来,随着生物工程技术的发展,特别是定向分离和培育的特性微生物工程技术的飞速进步,使传统脱氮理论受到挑战,并在实际氨氮废水的处理项目中被打破。生物脱氮理论上有了很多进展,新的脱氮理论在实践上得到了很好的验证,如:①亚硝酸硝化/反硝化工艺。该工艺可以节省25%硝化曝气量,节省

8、40%的反硝化碳源,节省50%反硝化反应器容积。②同时硝化/反硝化工艺(SND)。好氧环境和缺氧环境同时存在的一个反应器中,由于许多新的氮生物化学菌族被鉴定出来,在菌胶团作用下,硝化/反硝化同

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。