圆周角课件教育资料.ppt

圆周角课件教育资料.ppt

ID:59449376

大小:612.00 KB

页数:31页

时间:2020-09-18

圆周角课件教育资料.ppt_第1页
圆周角课件教育资料.ppt_第2页
圆周角课件教育资料.ppt_第3页
圆周角课件教育资料.ppt_第4页
圆周角课件教育资料.ppt_第5页
资源描述:

《圆周角课件教育资料.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、24.1.4圆周角一.复习引入:1.圆心角的定义?.OBC在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等,那么它们所对应的其余两个量都分别相等。答:顶点在圆心的角叫圆心角2.上节课我们学习了一个反映圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?顶点在圆上,并且两边都和圆相交的角叫做圆周角.什么叫做圆周角?·ABCDEO一、概念辩一辩图中的∠CDE是圆周角吗?CDECDECDECDE6.5圆周角(一)练习一:判断下列各图中,哪些是圆周角,为什么?图1图2图3图4图5图6图7图8图9如图是一个圆柱形的海洋馆的横截面的示意图,人们可以通过其中的圆弧形玻璃

2、AB观看窗内的海洋动物,同学甲站在圆心的O位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?二、观察类比圆心角探知圆周角在同圆或等圆中,同弧或等弧所对的圆心角相等.在同圆或等圆中,同弧或等弧所对的圆周角有什么关系?为了解决这个问题,我们先探究同弧所对的圆周角和圆心角之间有的关系.你会画同弧所对的圆周角和圆心角吗?探究·CDABO同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.三、分别量一下图中所

3、对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律吗?再分别量出图中所对的圆周角和圆心角的度数,比较一下,你什么发现?圆周角.gsp⌒⌒圆周角和圆心角的关系圆心与圆周角的位置关系有几类?分别画出来.(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部.·COAB·COAB·COABD为了进一步探究上面的发现,如图在⊙O任取一个圆周角∠BAC,将圆对折,使折痕经过圆心O和∠BAC的顶点A.由于点A的位置的取法可能不同,这时折痕可能会:(1)在圆周角的一条边上;·COAB同弧所对圆周角与圆心角

4、的关系即∵OA=OC,∴∠A=∠C.又∠BOC=∠A+∠C∴∠BOC=2∠A(2)在圆周角的内部.圆心O在∠BAC的内部,作直径AD,利用(1)的结果,有·COABD(3)在圆周角的外部.圆心O在∠BAC的外部,作直径AD,利用(1)的结果,有·COABD在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.圆周角定理在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.·ABC1OC2C3半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论.ADCOB圆

5、内接多边形:如果一个多边形所有顶点都在同一个圆上,这个多边形叫做圆内接多边形。这个圆叫做多边形的外接圆.圆内接多边形的性质:圆内接四边形的对角互补。1.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?ABCD12345678∠1=∠4∠5=∠8∠2=∠7∠3=∠6练习1.如图,在⊙O中,∠BOC=50°,求∠A的大小.●OBAC解:∠A=∠BOC=25°.ABOC如图,AB是直径,则∠ACB=____90度半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。2.如图,你能设法确定一个圆形纸片的圆

6、心吗?你有多少种方法?与同学交流一下.DABCOOO·方法一方法二方法三方法四AB练习例如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.又在Rt△ABD中,AD2+BD2=AB2,解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,∵CD平分∠ACB,∴AD=BD.七、例题3.求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(提示:作出以这条边为直径的圆.)·ABCO求证:△ABC为直角三角形.证明:CO=AB,以AB为直径作⊙O,∵AO=BO,∴AO=BO=CO.∴点C在⊙

7、O上.又∵AB为直径,∴∠ACB=×180°=90°.已知:△ABC中,CO为AB边上的中线,且CO=AB∴△ABC为直角三角形.练习练习:如图AB是⊙O的直径,C,D是圆上的两点,若∠ABD=40°,则∠BCD=_____.ABOCD40°2、求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(提示:作出以这条边为直径的圆.)·ABCO已知:△ABC,CO为AB边上的中线,求证:△ABC为直角三角形.证明:CO=AB,以AB为直径作⊙O,∵AO=BO,∴AO=BO=CO.∴点C在⊙O上.又∵AB为直径,∴∠ACB=×180°=90°.且C

8、O=AB∴△ABC为直角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。