欢迎来到天天文库
浏览记录
ID:59394854
大小:54.50 KB
页数:5页
时间:2020-05-29
《对培养学生数学创造性思维能力的思考.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、对培养学生数学创造性思维能力的思考一、对创造性思维结构的认识创造性思维是自觉的能动思维,是一种非常复杂的心理和智能活动,他的主要特征是新颖性、独创性、突破性、真理性和价值性。实施创造性思维能力的培养,需要有创见的设想和理智取舍活动的过程。许多著名心理学家就创造性思维的结构问题分别提出了它们各自的划分思想。在分析一般创造性思维过程时,一种被普遍认同的理论是由约瑟夫•沃拉斯(JosephWallas)于1926年提出来的。他认为创造性思维过程包括4个连续的阶段:①准备阶段;②酝酿阶段;③明朗阶段;④验证阶段。笔
2、者认为,创造性活动过程与科学创造活动过程大体上是一致的,可分为以下4个阶段:1、情境与选题准备阶段创造性思维活动的表现,需要教师营造良好的情境氛围,使学生产生趋向目标的强烈的创造欲望;其次要选准课题,然后围绕选题做好知识、资料的准备,了解前人在同一领域研究的进展情况等。准备得越充分,思路越开阔,就越容易获得成功。在这个过程中,避辑思维、抽象思维起主要作用。2、酝酿与构思阶段英国著名的思维教学专家爱德华•波诺(EdwardBono)曾说:“一切教学都可以说是在指引学生的注意力。思维教学可以说差不多完全是注意力
3、的取向问题,因为他不传授新知识和内容”。认识主体面对困惑的问题情境,需要在教师的引导下,进行定向分析导致矛盾或问题的关键,确定其实质性问题。一般需要多维度、多功能地考虑问题,运用分析、联想、类比、归纳、猜想、反思维定势等思维方法,以及运用分解、叠加、变形、代换、反演等数学方法进行推理、构想与探索。这一阶段的时间一般来说较长,而且思考十分艰苦,是训练学生意志、毅力,创造和体验数学建构过程、积累经验的最佳时期,需要抓住目标始终不放,一追到底,进行深入的探究性思维活动。3、领悟与突破阶段经过充分酝酿之后,学生情绪
4、异常高涨、思想十分活跃,在头脑中于某一瞬间突然产生顿悟,形成新的构想和数学猜想,从而实现思维的突破与创新,使问题得到解决。在这个过程中,创造性思维方法和数学美感起着突破口与领悟本质的关键作用。数学家阿达玛曾用他的切身体验来描述这一过程:“呈现于我面前的解答往往是:①与我前些日子的努力毫无关系,因-而难以认为是以前工作的结果;②出现得非常突然,儿乎无暇细想。”4、检验与完善阶段这是对顿悟式所形成的数学猜想等结果进行检验、论证,并不断接受实践的再检验及修正与完善的过程。这一时期是数学创造性思维活动的完善阶段。在
5、这个阶段,主要运用集中思维和逻辑思维的方法。需要指出的是,创造性思维活动的这四个阶段是互相联系不可分割的,各阶段之间并没有严格的界限,严格划分也是困难的。但其中第二、第三阶段是关键阶段,对实现创造、创新有着十分重要的意义,而起主要作用的是形象、灵感、审美意识等非逻辑思维。需要指出的是,创造性思维活动的这四个阶段是互相联系不可分割的,各阶段之间并没有严格的界限,严格划分也是困难的。但其中第二、第三阶段是关键阶段,对实现创造、创新有着十分重要的意义,而起主要作用的是形象、灵感、审美意识等非逻辑思维。创造性思维过
6、程,乂可以说是发散与集中思维互相作用的过程。在创造性思维的前期,为了尽可能多地获得各种设想,需要进行发散思维,这时应掌握较多的思维方法与创造技法。而在创造性思维的后期,由于较多的设想已出现,就需要运用几种思维加以筛选与验证。思维总是从问题开始的。从创造性思维的过程来解释创造性思维的结构,经历了“问题——猜想——创造”过程。在酝酿构思和领悟突破阶段-•般要通过逻辑思维、非逻辑思维、发散思维并形成猜想,然后用集中思维和逻辑思维达到对猜想的检验、论证和完善,形成创造。二、对数学创造性思维产生条件的认识从以上分析可
7、以看出,创造性思维不同于一•般的思维。它既是概括性、灵活性、广阔性、独立性、论证性等各种思维品质相互结合、高度协调的产物,乂是逻辑思维、形象思维、集中思维、发散思维等各种思维形式的辩证统一。因此,创造性思维产生的条件是相对复杂和苛刻的。1、具有丰富的知识经验和良好的认知结构法国数学家彭加勒说:“发明是辨认、选择”,他认为创造无非是一利选择而己,即选择数学中有用的组合,抛弃无用的组合。根据这一观点,创造性思维是根据需要调动储存在大脑中的各种知识和经验的表现,是辨认、选择和重新组合的过程。从这个意义上讲,掌握丰
8、富的知识与方法,形成良好的认知结构,是产生创造性思维的前提。我国数学家陈景润曾把华罗庚教授的《堆垒素数论》、《数论导引》从头到尾研究了7.8遍,重点章节读到40遍以上,这为他后来成功地将哥德巴赫猜想证明到“1+2”打下了坚实的理论基础。2、具有思维的高度灵活性灵活性是思维的品德之一。而高度的灵活性则是数学创造性思维的必要条件。面对复杂的对象,只有具备思维的高度灵活性,才能进行多方面、多层次、多角度的思考,才能冲破
此文档下载收益归作者所有