梯形面积计算公式推导.doc

梯形面积计算公式推导.doc

ID:59375306

大小:681.00 KB

页数:12页

时间:2020-09-04

梯形面积计算公式推导.doc_第1页
梯形面积计算公式推导.doc_第2页
梯形面积计算公式推导.doc_第3页
梯形面积计算公式推导.doc_第4页
梯形面积计算公式推导.doc_第5页
资源描述:

《梯形面积计算公式推导.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《梯形面积计算公式推导》教学实录及反思普洱市思茅二小张瑜一、教学内容义务教育课程标准实验教材人教版第九册88~89页。二、教材分析梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时

2、的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。三、学情分析学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的研究基础。可以用同样的推理方法得出梯形面积的计算公式。教师不必多讲,可让学生剪、拼、摆的操作,总结公式。四、目标预设1、运用“转化”的方法引导学生学习推导梯形面积的计算公式。2、通过动手操作培养学生的动手实践能力,激发学习兴趣,培养合作意识。3、运用梯形面积的计算公式,解决相应的实际问题。五、重点:引导学生运用“转化”的方法推导梯形面积的计算公式。难点:1、运用

3、“转化”的方法推导梯形面积的计算公式。2、对公式中梯形面积=(上底+下底)×高÷2中“÷2”的理解。六、教学记实(一)复习准备1、复习已学的图形面积计算公式:师述:“同学们你们都学过哪些图形的面积,是怎样计算的?”根据学生的回答依次板书:长方形面积=长×宽正方形面积=边长×边长平行四边形面积=底×高三角形面积=底×高÷22、复习平行四边形、三角形面积计算公式的推导步骤:师述“想一想你们是分几步把平行四边形、三角形面积的计算公式推导出来的?”根据学生回答依次板书:步骤:1、转化2、找关系3、推导公式4、所用方法(设计意图:通过复习从而唤起学生的回

4、忆,为沟通新旧知识的联系,奠定了基础。)(二)探究新知1、用生活中的实际问题引出本节课的教学内容:(1)师边出示图边叙述:“我们学校打算在操场南侧建一块绿地,算一算这块绿地需要铺草坪多少平方米?解决这个问题的关键是什么?”生答:“求梯形的面积”。出示课题:梯形的面积(2)引出转化法。师边叙述边板书:“梯形的面积对于我们来说是新知识,我们要把梯形转化成我们学过的长方形、正方形、平行四边形、三角形(板书:转化),利用旧知识解决新问题,推导出梯形面积的计算公式。”(板书:计算公式的推导)(设计意图:启发学生运用已学的知识,大胆提出猜测,激发学生的探索

5、新知的欲望,又使学生明确了探索目标与方向。)(3)布置动手操作要求:师述:“以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。”2、学生分组动手操作推导出梯形面积的计算公式。(教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)可能遇到的问题:找关系割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。3、各小组汇报探究成果,师给予适当补充。(1)将两个完全一样的普通梯形转化为平行四边形。1、转化:梯形平行四边形2、找关系:平行四边形面积=2个梯形面积底=上底+下底

6、高=高3、推导公式:平行四边形面积=底×高‖‖‖2个梯形面积=(上底+下底)×高梯形面积=(上底+下底)×高÷24、方法:拼摆法师问:“其他同学哪儿不懂?”师问:“为什么要除以2?”(2)将两个直角梯形转化为长方形。1、转化梯形长方形2、找关系:长方形面积=2个梯形面积长=上底+下底宽=高3、推导公式:长方形面积=长×宽‖‖‖2个梯形面积=(上底+下底)×高梯形面积=(上底+下底)×高÷24、方法:拼摆法(3)将两个直角梯形转化为正方形。1、转化:梯形正方形2、找关系:正方形面积=2个梯形面积边长=上底+下底边长=高3、推导公式:正方形面积=边

7、长×边长‖‖‖2个梯形面积=(上底+下底)×高梯形面积=(上底+下底)×高÷24、方法:拼摆法(4)将普通梯形转化为三角形。(沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,最后转化为三角形。)..∨1、转化:梯形三角形2、找关系:三角形面积=梯形面积底=上底+下底高=高3、推导公式:三角形面积=底×高÷2‖‖‖梯形面积=(上底+下底)×高÷24、方法:旋转法师问:“其他同学哪儿不懂?”师问:“为什么要除以2?”(5)将普通梯形转化为平行四边形(沿高的中点做上底的平行线,沿平行线剪开,将

8、两部分图形转化为平行四边形)1、转化:梯形平行四边形2、找关系:平行四边形面积=梯形面积底=上底+下底高=高÷23、推导公式:平行四边形面积=底×高‖

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。