欢迎来到天天文库
浏览记录
ID:59323197
大小:14.50 KB
页数:1页
时间:2020-09-05
《蒙特卡罗仿真原理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、蒙特卡罗仿真原理 蒙特卡罗(MonteCarlo)方法,又称随机抽样或统计模拟方法,泛指所有基于统计采样进行数值计算的方法。在第二次世界大战期间,美国参与“曼哈顿计划’’的几位科学家StanislawUlam,JohnVonNeumann和N.Metropolis等首先将这种方法用于解决原子弹研制中的一个关键问题。后来N.Metropolis用驰名世界的赌城---摩纳哥的MonteCarlo一来命名这种方法,为它蒙上了一层神秘色彩。随着现代计算机技术的飞速发展,蒙特卡罗方法已经在统计物理、经济学、社会学甚至气象学等方面的科学研究中发挥了极其重要的作用,将蒙特卡罗方法用于仿真即为蒙
2、特卡罗仿真。蒙特卡罗方法适用于两类问题,第一类是本身就具有随机性的问题,第二类是能够转化为概率模型进行求解的确定性问题。 ※蒙特卡罗方法求解问题的一般步骤 用蒙特卡罗方法求解问题一般包括构造或描述概率过程、从已知概率分布抽样和建立估计量三个步骤。 构造或描述概率过程实际上就是建立随机试验模型,构造概率过程是对确定性问题而言的,描述概率过程是对随机性问题而言的,不同的问题所需要建立的随机试验模型各不相同。 所谓的从已知概率分布抽样指的是随机试验过程,随机模型中必要包含某些已知概率分布的随机变量或随机过程作为输入,进行随机试验的过程就是对这些随机变量的样本或随机过程的样本函数作
3、为输入产生相应输出的过程,因此通常被称为对已知概率分布的抽样。如何产生已知分布的随机变量或随机过程是蒙特卡罗方法中的一个关键问题。 最后一个步骤是获得估计量,蒙特卡罗方法所得到的问题的解总是对真实解的一个估计,本身也是一个随机变量,这个随机变量是由随机试验模型输出通过统计处理得到的。
此文档下载收益归作者所有