数字图像处理-空域滤波-20181107学习ppt课件.ppt

数字图像处理-空域滤波-20181107学习ppt课件.ppt

ID:59268028

大小:1.87 MB

页数:36页

时间:2020-09-22

数字图像处理-空域滤波-20181107学习ppt课件.ppt_第1页
数字图像处理-空域滤波-20181107学习ppt课件.ppt_第2页
数字图像处理-空域滤波-20181107学习ppt课件.ppt_第3页
数字图像处理-空域滤波-20181107学习ppt课件.ppt_第4页
数字图像处理-空域滤波-20181107学习ppt课件.ppt_第5页
资源描述:

《数字图像处理-空域滤波-20181107学习ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、空域滤波器空域滤波器空域滤波和空域滤波器的定义:使用空域模板进行的图像处理,被称为空域滤波。模板本身被称为空域滤波器。空间域滤波器分类平滑空域滤波器锐化空域滤波器空间滤波和空间滤波器的定义在M×N的图像f上,使用m×n的滤波器:空间滤波的简化形式:其中,w是滤波器系数,z是与该系数对应的图像灰度值,mn为滤波器中包含的像素点总数。在空域滤波功能都是利用模板卷积,主要步骤为:(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)将模板上系数与模板下对应像素相乘;(3)将所有乘积相加;(4)将和(模板的输出响应)赋给图中对应模板中心

2、位置的像素。例:模板滤波示意:模板的输出为:平滑空域滤波器作用(1)模糊处理:去除图像中一些不重要的细节。(2)减小噪声。平滑空间滤波器的分类(1)线性平滑滤波器:均值滤波器(2)非线性平滑滤波器:?最大值滤波器?中值滤波器?最小值滤波器线性平滑滤波器包含在滤波器邻域内像素的平均值,也称为均值滤波器。作用(1)减小图像灰度的“尖锐”变化,减小噪声。(2)由于图像边缘是由图像灰度尖锐变化引起的,所以也存在边缘模糊的问题。线性平滑滤波器图a是标准的像素平均值。图b是像素的加权平均,表明一些像素更为重要。加权均值滤波器线性平滑滤波器——例13x3

3、5x59x915x1535x35原图图像说明:顶端的黑方块,大小分别为3,5,9,15,25,35,45,55个像素,边界相隔25个像素。位于底端的字母在10到24个像素之间,增量为2个像素。垂直线段5个像素宽,100个像素高,间隔20个像素。圆的直径25个像素,边缘相隔15个像素。灰度以20%增加。噪声矩形大小是50*120像素。结果分析:(1)噪声明显减少,但图像变模糊了。尤其是图像细节域滤波器近似相同时。(2)滤波器越大,模糊程度加剧。线性滤波器——例2提取感兴趣物体而模糊图像统计排序滤波器什么是统计排序滤波器??是一种非线性滤波器,

4、基于滤波器所在图像区域中像素的排序,由排序结果决定的值代替中心像素的值。分类:(1)中值滤波器:用像素领域内的中间值代替该像素。(2)最大值滤波器:用像素领域内的最大值代替该像素。(3)最小值滤波器:用像素领域内的最小值代替该像素。统计排序滤波器中值滤波器主要用途:去除噪声计算公式:R=mid{zk

5、k=1,2,…,n}最大值滤波器主要用途:寻找最亮点计算公式:R=max{zk

6、k=1,2,…,n}最小值滤波器主要用途:寻找最暗点计算公式:R=min{zk

7、k=1,2,…,n}中值滤波器中值滤波的原理用模板区域内像素的中间值,作为结果值R=

8、mid{zk

9、k=1,2,…,n}强迫突出的亮点或暗点更象它周围的值,以消除孤立的亮点或暗点。中值滤波器中值滤波算法的实现将模板区域内的像素排序,求出中间值例如:3x3的模板,第5大的是中值,5x5的模板,第13大的是中值,7x7的模板,第25大的是中值,9x9的模板,第41大的是中值。对于同值像素,连续排列。如(10,15,20,20,20,20,20,25,100)中值滤波器中值滤波算法的特点:(1)在去除噪音的同时,可以比较好地保留边的锐度和图像的细节(优于均值滤波器)(2)能够有效去除脉冲噪声:以黑白点(椒盐噪声)叠加在图像上中。中

10、值滤波器3x3均值滤波3x3中值滤波原图实例:原图像高斯噪声椒盐噪声高斯噪声图的5×5十字中值滤波噪声椒盐噪声图的5×5十字中值滤波噪声最大值滤波器最小值滤波器锐化空间滤波器主要用于增强图像的边缘及灰度跳变部分邻域平均方法-积分过程-结果使图像的边缘模糊锐化方法-微分过程-结果使图像的边缘突出注意:噪声的影响先去噪,再锐化操作锐化空间滤波基础对微分的定义可以有各种表述,这里必须保证如下几点(1)在平坦段为0(2)在灰度阶梯或斜坡的起始点处为非0()(3)沿着斜坡面微分值非0()二阶微分也类似:(1)平坦区为0(2)在灰度阶梯或斜坡的起始点及

11、中止点处为非0()(3)沿常数斜率的斜坡面的微分0(=0)对于一元函数表达一阶微分:二阶微分:结论:(1)一阶微分产生的边缘宽(如:沿斜坡很长一段非0);(2)二阶微分对细节反应强烈如细线、孤立点(斜坡起止点为非0);(3)一阶微分对灰度阶跃反应强烈;(4)二阶微分对灰度阶梯变化产生双响应,在大多数应用中,对图像增强来说,二阶微分化一阶微分好一些。在图像中一阶微分用梯度法来实现,梯度用一个二维列向量来定义模值:实际中往往用梯度模值代替梯度为减少计算量,用下式算近似:基于一阶微分的图像增强——梯度法右图给出了Roberts算子和Sobel算子

12、:考虑一个3x3的图像区域,z代表灰度级,上式在点z5的∇f值可用数字方式近似。z5z1z2z3z4z6z7z8z9Roberts交叉梯度算子:∇f≈

13、z9-z5

14、+

15、z8–z6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。