欢迎来到天天文库
浏览记录
ID:59261038
大小:1.69 MB
页数:22页
时间:2020-09-08
《2016中考复习专题动态几何问题(教师版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考专题:动态几何问题知 识 点常用解法动点问题中的特殊图形等腰三角形与直角三角形利用等腰三角形或直角三角形的特殊性质求解动点问题相似问题利用相似三角形的对应边成比例、对应角相等求解动点问题动点问题中的计算问题动点问题的最值与定值问题理解最值或定值问题的求法动点问题的面积问题结合面积的计算方法来解决动点问题动点问题的函数图象问题一次函数或二次函数的图象结合函数的图象解决动点问题☞考点归纳归纳1:动点中的特殊图形基础知识归纳:等腰三角形的两腰相等,直角三角形的两直角边的平方和等于斜边的平方,平行四边形的对边平行且相等,矩形的对角线相等,菱形的对角线互相垂直基本方法归纳:动点问题常与等腰三角形、直
2、角三角形、平行四边形、矩形、菱形等特殊图形相结合,解决此类问题要灵活运用这些图形的特殊性质注意问题归纳:注意区分等腰三角形、直角三角形、平行四边形、矩形、菱形的性质.归纳2:动点问题中的计算问题基础知识归纳:动点问题的计算常常涉及到线段和的最小值、三角形周长的最小值、面积的最大值、线段或面积的定值等问题.基本方法归纳:线段和的最小值通常利用轴对称的性质来解答,面积采用割补法或面积公式,通常与二次函数、相似等内容.注意问题归纳:在计算动点问题的过程中,要注意与相似、锐角三角函数、对称、二次函数等内容的结合.归纳3:动点问题的图象基础知识归纳:动点问题经常与一次函数、反比例函数和二次函数的图象相结
3、合.基本方法归纳:一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数的图象是抛物线.注意问题归纳:动点函数的图象问题可以借助于相似、特殊图形的性质求出函数的图象解析式,同时也可以观察图象的变化趋势.一、试题特点用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变”、“一般”与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段(直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等)
4、.二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。三、题型精讲(一)、点的运动【例1】(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运
5、动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )A.B.C.D.【答案】B.【解析】试题分析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选B.考点:1.动点问题的函数图象;2.分段函数;
6、3.分类讨论;4.压轴题.【例2】已知,,(如图).是射线上的动点(点与点不重合),是线段的中点.(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;BADMECBADC备用图(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长.【思路点拨】(1)取中点,联结;(2)先求出DE;(3)分二种情况讨论。解析:(上海市)(1)取中点,联结,为的中点,,.又,.,得;(2)由已知得.以线段为直径的圆与以线段为直径的圆外切,,即.解得,即线段的长为;(3)由已知,以为顶点的三角形与相似,又易证得.由此可知,另一对对应角相等
7、有两种情况:①;②.①当时,,..,易得.得;②当时,,..又,.,即,得.解得,(舍去).即线段的长为2.综上所述,所求线段的长为8或2.二、线的运动【例3】(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s)
此文档下载收益归作者所有