资源描述:
《Matlab编程贝塞尔函数图片.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、姓名:张俊红学号:S专业:集成电路工程1.第一类贝塞尔函数曲线图clearformatlongx=(0:0.1:20);J_0=besselj(0,x);J_1=besselj(1,x);J_2=besselj(2,x);y=0*x;figure(1)h1=plot(x,J_0,'k-',x,J_1,'k-.',x,J_2,'k--','linewidth',1.8);holdon;h2=plot(x,y,'k-');boxoff;gridon;axis([0,20,-1,1]);xlabel('VariableX');yl
2、abel('VariableY');title('零阶、一阶、二阶第一类贝塞尔函数曲线图');text(1.2,0.8,'J_0(x)');text(2.3,0.6,'J_1(x)');text(4.5,0.3,'J_2(x)');legend('零阶','一阶','二阶',0);set(h1,'LineSmoothing','on');set(h2,'LineSmoothing','on');export_figbess01.png;2.第二类贝塞尔函数曲线图clearformatlongx=(0:0.1:20);Y_0=
3、bessely(0,x);Y_1=bessely(1,x);Y_2=bessely(2,x);y=0*x;figureh1=plot(x,Y_0,'k-',x,Y_1,'k-.',x,Y_2,'k--','linewidth',1.8);holdon;h2=plot(x,y,'k-');boxoff;gridon;axis([0,20,-1,1]);xlabel('VariableX');ylabel('VariableY');title('零阶、一阶、二阶第二类贝塞尔函数曲线图');text(1.8,0.6,'Y_0(x)
4、');text(3.4,0.5,'Y_1(x)');text(6.3,0.2,'Y_2(x)');legend('零阶','一阶','二阶',0);set(h1,'LineSmoothing','on');set(h2,'LineSmoothing','on');export_figbess02.png;3.修正第一类贝塞尔函数曲线图clearformatlongx=(0:0.1:20);I_0=besseli(0,x);I_1=besseli(1,x);I_2=besseli(2,x);figureh=plot(x,I_0
5、,'k-',x,I_1,'k-.',x,I_2,'k--','linewidth',1.8);boxoff;gridon;axis([0,5,0,10]);xlabel('VariableX');ylabel('VariableY');title('零阶、一阶、二阶修正第一类贝塞尔函数曲线图');text(0.7,1.6,'I_0(x)');text(2.7,2.4,'I_1(x)');text(4.1,6,'I_2(x)');legend('零阶','一阶','二阶',0);set(h,'LineSmoothing','o
6、n');export_figbess03.png4.修正第二类贝塞尔函数曲线图clearformatlongx=(0:0.1:20);K_0=besselk(0,x);K_1=besselk(1,x);K_2=besselk(2,x);figureh=plot(x,K_0,'k-',x,K_1,'k-.',x,K_2,'k--','linewidth',1.8);boxoff;gridon;axis([0,5,0,10]);xlabel('VariableX');ylabel('VariableY');title('零阶、一
7、阶、二阶修正第二类贝塞尔函数曲线图');text(0.1,0.5,'K_0(x)');text(0.3,4.5,'K_1(x)');text(0.55,8,'K_2(x)');legend('零阶','一阶','二阶',0);set(h,'LineSmoothing','on');export_figbess04.png;5.L=0时图解法确定LP模的ha函数图clearallformatlongha=[0:0.0001:12];a=[0:0.001:2];b=[0:0.001:5];c=[0:0.001:8];y=ha.*
8、besselj(1,ha)./besselj(0,ha);y1=sqrt(4-a.^2).*besselk(1,sqrt(4-a.^2))./besselk(0,sqrt(4-a.^2));y2=sqrt(25-b.^2).*besselk(1,sqrt(25-b.^2))./bessel