初三函数图象平移及其典型例题.doc

初三函数图象平移及其典型例题.doc

ID:59224506

大小:351.00 KB

页数:8页

时间:2020-09-09

初三函数图象平移及其典型例题.doc_第1页
初三函数图象平移及其典型例题.doc_第2页
初三函数图象平移及其典型例题.doc_第3页
初三函数图象平移及其典型例题.doc_第4页
初三函数图象平移及其典型例题.doc_第5页
资源描述:

《初三函数图象平移及其典型例题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、个性化教案(内页)二次函数的图像教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。2、了解,,三类二次函数图像之间的关系。3、会从图像的平移变换的角度认识型二次函数的图像特征。教学重点:从图像的平移变换的角度认识型二次函数的图像特征。教学难点:对于平移变换的理解和确定,学生较难理解。一、知识回顾二次函数的图像和特征:1、名称;2、顶点坐标;3、对称轴;4、当时,抛物线的开口向,顶点是抛物线上的最点,图像在x轴的(除顶点外);当时,抛物线的开口向,顶点是抛物线上的最点图像在x轴的(除顶点外)。二、合作学习在同一坐标系中画出函数图像,的图像。(1)请比较这三个函数图像

2、有什么共同特征?(2)顶点和对称轴有什么关系?(3)图像之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数和图像之间的关系1、结合学生所画图像,引导学生观察与的图像位置关系,直观得出的图像的图像。教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如:(0,0)(-2,0)(2,2)(0,2);(-2,2)(-4,2)②也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。2、用同样的方法得出的图像的图像。3、请你总结二次函数y=a(x+m)2的图象和性质.()的图像的图像。函数的图像的顶点坐标是(-m,0),对称轴是直线x=

3、-m4、做一做(1)、抛物线开口方向对称轴顶点坐标y=2(x+3)2y=-3(x-1)2y=-4(x-3)2(2)、填空:①、由抛物线y=2x²向平移个单位可得到y=2(x+1)2②、函数y=-5(x-4)2的图象。可以由抛物线向平移4个单位而得到的。3、对于二次函数,请回答下列问题:①把函数的图像作怎样的平移变换,就能得到函数的图像?②说出函数的图像的顶点坐标和对称轴。第3题的解答作如下启发:这里的m是什么数?大于零还是小于零?应当把的图像向左平移还是向右平移?在此同时用平移的方法画出函数的大致图像(事先画好函数的图像),借助图像有学生回答问题。五、探究二次函数和图像之间的关系

4、1、在上面的平面直角坐标系中画出二次函数的图像。首先引导学生观察比较与的图像关系,直观得出:的图像的图像。(结合多媒体演示)再引导学生刚才得到的的图像与的图像之间的位置关系,由此得出:只要把抛物线先向左平移2个单位,在向上平移3个单位,就可得到函数的图像。函数解析式图像的对称轴图像的顶点坐标1、总结的图像和图像的关系()的图像的图像的图像。的图像的对称轴是直线x=-m,顶点坐标是(-m,k)。口诀:(m、k)正负左右上下移(m左加右减k上加下减)1、函数的图像和函数图像之间的关系。2、函数的图像在开口方向、顶点坐标和对称轴等方面的性质。二次函数的图像教学目标:1、了解二次函数图像

5、的特点。2、掌握一般二次函数的图像与的图像之间的关系。3、会确定图像的开口方向,会利用公式求顶点坐标和对称轴。教学重点:二次函数的图像特征教学难点:例2的解题思路与解题技巧。一、回顾知识1、二次函数的图像和的图像之间的关系。2、讲评上节课的选作题对于函数,请回答下列问题:(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?(2)函数图像的对称轴、顶点坐标各是什么?思路:把化为的形式。=在中,m、k分别是什么?从而可以确定由什么函数的图像经怎样的平移得到的?二、探索二次函数的图像特征1、问题:对于二次函数y=ax²+bx+c(a≠0)的图象及图象的形状、开口方向、位置又是怎样的

6、?学生有难度时可启发:通过变形能否将y=ax²+bx+c转化为y=a(x+m)2+k的形式?=由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。2、二次函数的图像特征(1)二次函数(a≠0)的图象是一条抛物线;(2)对称轴是直线x=,顶点坐标是为(,)(3)当a>0时,抛物线的开口向上,顶点是抛物线上的最低点。当a<0时,抛物线的开口向下,顶点是抛物线上的最高点。三、巩固知识1、例1、求抛物线的对称轴和顶点坐标。有由学生自己完成。师生点评后指出:求抛物线的对称轴和顶点坐标可以采用配方法或者是用顶点坐标公式。3、(补充例题)例2已知关于x的二次函

7、数的图像的顶点坐标为(-1,2),且图像过点(1,-3)。(1)求这个二次函数的解析式;(2)求这个二次函数的图像与坐标轴的交点坐标。(此小题供有余力的学生解答)分析与启发:(1)在已知抛物线的顶点坐标的情况下,将所求的解析式设为什么比较简便?四、小结1、函数的图像与函数的图像之间的关系。2、函数的图像在对称轴、顶点坐标等方面的特征。3、函数的解析式类型:一般式:顶点式:2.(2012广东佛山8分)(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式;①y随x变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。