半导体纳米材料的的光学性能.docx

半导体纳米材料的的光学性能.docx

ID:59222174

大小:11.86 KB

页数:3页

时间:2020-09-09

半导体纳米材料的的光学性能.docx_第1页
半导体纳米材料的的光学性能.docx_第2页
半导体纳米材料的的光学性能.docx_第3页
资源描述:

《半导体纳米材料的的光学性能.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、半导体纳米材料的的光学性能随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子,空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。由于量子尺寸效应导致能隙增大,半导体纳米材料的吸收光谱向高能方向移动,即吸收蓝移。同时,由于电子和空穴的运动受限,他们之

2、间的波函数重叠增大,激子态振子强度增大,导致激子吸收增强,因此很容易观察到激子吸收峰,导致吸收光谱结构化.通常通过吸收光谱来研究半导体纳米微粒的量子尺寸效应和激子能级结构,近年来,研究较多的有[14~20]:Ⅲ-Ⅴ族半导体GaAs、InSb和GaP;Ⅱ-Ⅵ族半导体ZnS、CdS、CdSe和CdTe;Ⅰ-Ⅶ族半导体Cu-Cl、CuBr和CuI;PbS、PbI和间接带隙半导体材料Ag-Br;过渡金属氧化物Fe2O3、Cu2O、ZnO和非过渡金属氧化物SnO2、In2O3、Bi2O3等。余保龙等人[21]研究发现,SnO2纳米微粒用表面活性剂分子包覆时,由于表面的介电

3、限域效应其吸收带边发生红移,而且随着表面包覆物与SnO2的介电常数差值增大和包覆物的浓度增大,其红移量增大。半导体纳米微粒受光激发后产生电子-空穴对(即激子),电子与空穴复合的途径有 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,发射波长随着微粒尺寸的减小向高能方向移动(蓝移)。 (2)通过表面缺陷态间接复合发光[9,22]。在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态。微粒受光激发后,光生载流子以极快的速度受限于表面缺陷态,产生表面态发光。微粒表面越完好,表面对载流子的陷获能力越弱,表面态发光就越弱。 (3)通过杂质能

4、级复合发光。对半导体纳米材料的研究开辟了人类认识世界的新层次,也开辟了材料科学研究的新领域。总的看来,半导体纳米材料的光学性能研究已取得了很大进展,人们已建立起了半导体纳米微粒中电子能态的理论模型,在材料的线性和非线性光学性能方面都开展了大量的工作,获得了很多有重要意义的成果。但是还有许多问题需要进一步深入研究,例如半导体纳米材料激子能级的理论结果与实验数据之间仍有差距,间接带隙半导体纳米材料的发光机理还有待研究,非线性光学性能的实验工作所涉及纳米材料的范围不够广,掺杂半导体纳米体系中杂质离子与基质间的相互作用还有许多新的物理内容需要揭示和探索等等。随着研究的进

5、一步深入,一些与传统材料物理不同的新现象、新概念还会不断诞生,这些都将为光电子技术的发展提供新的机遇。人们有理由相信,在不久的将来,以半导体纳米材料为基础的光电子产品将走向实用化,并将极大地改变人类社会的生活。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。