欢迎来到天天文库
浏览记录
ID:59090561
大小:199.00 KB
页数:6页
时间:2020-09-14
《《空间直线与直线的位置关系》教案(沪教版高三上)教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、空间直线与直线的位置关系一 一、引入课题从生活实例中寻找空间中平行的传递性..二、讲授新课(一)公理4问题1:平面中直线的平行传递性?问题2:利用教室内实例寻找空间中直线平行的传递性.公理4:平行于同一直线的两条直线相互平行.公理分析:要证明空间两条直线平行,要找到中间桥梁.(二)等角定理问题1:初中学习的等角定理?如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成角相等或互补.问题2:在空间中,这个定理仍然成立吗?等角定理:如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.注意表述上区别:
2、平面几何合立体几何中某些理论上的不一致应引起学生掌握理论时的重视.(三)例题分析例1:在长方体中,E、F分别为,AD的中点,求证:证明:取BC中点G,连结B[例题解析]:学会在空间中借助平行四边形,寻找起到桥梁作用的直线.AABBDCBEF例3在长方体中,求证:.ABBDCBAB证明:,,是锐角,.[说明]:掌握在空间中利用直线的平行来证明角相等.(四)、问题拓展1、空间四边形空间四边形相关知识复习:在空间四边形ABCD中,E、H分别为AB、AD中点,F、G为CB、CD三等分点,且.求证:EF,HG,AC三线共点.[说明]复习公理1、2,对
3、于空间四边形——这一立体几何内的新事物,进行回顾和整理,为下一步更好学习做好准备.例4已知E、F、G、H分别是空间四边形ABCD各边中点.(1)判断四边形EFGH形状;(答:平行四边形.通过公理4)(2)若空间四边形中对角线AC=BD,判断四边形EFGH形状;(答:菱形.平行四边形对角线相互垂直)(3)四边形EFGH什么情况下为矩形?(答:对角线相互垂直,即)(4)结合(2)、(3),可得正方形EFGH(5)第(2)、(3)、(4)题的逆命题是否成立?该如何求证?如(2)若四边形EFGH中,,则AC=BD(6)若E、H分别为AB、AD中点,
4、F、G为CB、CD三等分点,且,判断四边形EFGH形状.(梯形EFGH)证明:E、H分别为AB、AD中点梯形EFGH[说明]这是空间两条直线平行——公理4的典型应用,加以推测、证明的重要应用.2、对于平面图形的结论:有些可推广到立几图形并有完全相同的结论;有些在立几图形中有相似的结论,但不完全相同;有些在立几中则有完全不同的结论.三、巩固练习练习14.2(1);1、2四、课堂小结1.空间两条直线平行的判定.2.空间中等角定理得由来与应用3.空间四边形各边中点的相关问题4.平面几何与立体几何结论间的比较与联系五、课后作业补充作业:1.在正方体
5、中,点E、F分别是中点,判断四边形的形状并加以证明.2.正方体中,E、F分别为AB、BC中点,试画出过点E、F、的截面.AAAAD高考高·考¥资%源~网高考资源网资源网CEBA3.在正方体中,点E、F分别在AB、AD上,点G,H分别在上,且满足,联结求证:4.空间四边形ABCD的各边中点依次为E、F、G、H,连结EG、FH.(1)求证:EG与HF互相平分(2)若BD=2,AC=4,求的值.A5.如图:在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若AC+BD=m,AC+BD=n,则=BCD6.如图,A是ΔBCD所
6、在平面外一点,M,N分别是ΔABC和ΔACD的重心,若BD=6,求MN的长.ABCDMNEF六、教学设计说明1、对教材的研究认识:空间中直线与直线的平行关系,并非本章节内容的难点和重点.但是由于平面几何中也有平行的传递性质和等角定理,因此,对于学生数学类比、推测、论证能力都是一格很好的锻炼机会.因此除去基本知识要点以外,在教学设计上,我还有意识地加强类比、推测、论证能力的培养.此外,在空间几何的常规图形中,除了长方体、正方体等几何体外,空间四边形也有非常重要的地位.在立体几何刚刚开始的平面内容中,空间四边形——这一典型图形就频频出现,对于同
7、学在三维空间中掌握知识要点十分有帮助.因此,探究空间四边形相关内容和知识要点,对于同学学习和掌握立体几何相关内容非常有帮助.所以在内容教授上又添加了空间四边形中线段平行理论的研究.2、课堂教学模式的设置:自主探究是传统教学模式的一种补充,自主探究能够使学生成为研究问题的主人,能够培养学生的思维能力.数学是思维的科学,思维能力是数学的核心,教学过程的设计要能够体现教学本质;能够突出所学数学内容的本质;组织教学的过程要能触及学生的灵魂深处.因此,课堂教学中提倡问题教学,抓住学生的认识现实,恰当地创设问题情境,使学习者能够在课堂上进行积极有效的学
8、习.3、课堂练习题的说明:由于通过类比的教学方式,学生对于公理4和等角定理得学习未必能引起足够的重视.由于从平面中推广到空间中仍然成立.所以对于大多数同学来讲,一定觉得比较简单.
此文档下载收益归作者所有