欢迎来到天天文库
浏览记录
ID:59015428
大小:105.50 KB
页数:6页
时间:2020-09-15
《2015年高中数学步步高大一轮复习讲义(文科)第5讲指数与指数函数.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5讲指数与指数函数一、选择题1.已知a=21.2,b=-0.8,c=2log52,则a,b,c的大小关系为( ).A.c2,而b=-0.8=20.8,所以1
2、x,令2x-=0,得x=-1,则函数y=(a-1)2x-恒过定点.答案 C4.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为( ).A.B.C.2D.4解析 由题意知f(1)+f(2)=loga2+6,即a+loga1+a2+loga2=loga2+6,a2+a-6=0,解得a=2或a=-3(舍).答案 C5.若函数f(x)=(k-1)ax-a-x(a>0且a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是下图中的( ).解析 函数f(x)=(k-1)ax-a-x为奇函数
3、,则f(0)=0,即(k-1)a0-a0=0,解得k=2,所以f(x)=ax-a-x,又f(x)=ax-a-x为减函数,故04、[f(x)]={0,-1}.答案 B二、填空题7.已知正数a满足a2-2a-3=0,函数f(x)=ax,若实数m、n满足f(m)>f(n),则m、n的大小关系为________.解析∵a2-2a-3=0,∴a=3或a=-1(舍).函数f(x)=ax在R上递增,由f(m)>f(n)得m>n.答案m>n8.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的取值范围是________.解析 对任意x1≠x2,都有<0成立,说明函数y=f(x)在R上是减函数,则00,且5、a≠1)有两个零点,则实数a的取值范围是________.解析 令ax-x-a=0即ax=x+a,若01,y=ax与y=x+a的图象如图所示.答案 (1,+∞)10.已知f(x)=x2,g(x)=x-m,若对∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是________.解析 x1∈[-1,3]时,f(x1)∈[0,9],x2∈[0,2]时,g(x2)∈,即g(x2)∈,要使∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),只需f(x)min≥g(x)6、min,即0≥-m,故m≥.答案 三、解答题11.已知函数f(x)=.(1)判断函数f(x)的奇偶性;(2)求证f(x)在R上为增函数.(1)解 因为函数f(x)的定义域为R,且f(x)==1-,所以f(-x)+f(x)=+=2-=2-=2-=2-2=0,即f(-x)=-f(x),所以f(x)是奇函数.(2)证明 设x1,x2∈R,且x10,2x2+1>0,∴f(x1)0,a≠1)的7、图象经过点A(1,6),B(3,24).(1)求f(x);(2)若不等式()x+()x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.解析(1)把A(1,6),B(3,24)代入f(x)=b·ax,得结合a>0且a≠1,解得∴f(x)=3·2x.(2)要使()x+()x≥m在(-∞,1]上恒成立,只需保证函数y=()x+()x在(-∞,1]上的最小值不小于m即可.∵函数y=()x+()x在(-∞,1]上为减函数,∴当x=1时,y=()x+()x有最小值.∴只需m≤即可.∴m的取值范围(-∞,]13.若函数y=为奇函数.(1)求a的值;(2)求
4、[f(x)]={0,-1}.答案 B二、填空题7.已知正数a满足a2-2a-3=0,函数f(x)=ax,若实数m、n满足f(m)>f(n),则m、n的大小关系为________.解析∵a2-2a-3=0,∴a=3或a=-1(舍).函数f(x)=ax在R上递增,由f(m)>f(n)得m>n.答案m>n8.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的取值范围是________.解析 对任意x1≠x2,都有<0成立,说明函数y=f(x)在R上是减函数,则00,且
5、a≠1)有两个零点,则实数a的取值范围是________.解析 令ax-x-a=0即ax=x+a,若01,y=ax与y=x+a的图象如图所示.答案 (1,+∞)10.已知f(x)=x2,g(x)=x-m,若对∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是________.解析 x1∈[-1,3]时,f(x1)∈[0,9],x2∈[0,2]时,g(x2)∈,即g(x2)∈,要使∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),只需f(x)min≥g(x)
6、min,即0≥-m,故m≥.答案 三、解答题11.已知函数f(x)=.(1)判断函数f(x)的奇偶性;(2)求证f(x)在R上为增函数.(1)解 因为函数f(x)的定义域为R,且f(x)==1-,所以f(-x)+f(x)=+=2-=2-=2-=2-2=0,即f(-x)=-f(x),所以f(x)是奇函数.(2)证明 设x1,x2∈R,且x10,2x2+1>0,∴f(x1)0,a≠1)的
7、图象经过点A(1,6),B(3,24).(1)求f(x);(2)若不等式()x+()x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.解析(1)把A(1,6),B(3,24)代入f(x)=b·ax,得结合a>0且a≠1,解得∴f(x)=3·2x.(2)要使()x+()x≥m在(-∞,1]上恒成立,只需保证函数y=()x+()x在(-∞,1]上的最小值不小于m即可.∵函数y=()x+()x在(-∞,1]上为减函数,∴当x=1时,y=()x+()x有最小值.∴只需m≤即可.∴m的取值范围(-∞,]13.若函数y=为奇函数.(1)求a的值;(2)求
此文档下载收益归作者所有