欢迎来到天天文库
浏览记录
ID:59010904
大小:1.02 MB
页数:82页
时间:2020-09-26
《第十章 协方差分析ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十章协方差分析第一节协方差分析的意义一是测验多个线性方程中回归系数的差异显著性;二是对试验进行统计控制,矫正处理平均数并测验矫正平均数间的差异显著性;三是对协方差组分进行估计;现分述如下。测验多个线性方程中回归系数的差异显著性;如果各bi没有显著差异,则表明各回归线具有相同的斜率;因而可进而求得一个合并的b值,以增加估计的精确性。如果各bi有显著差异,则表明各回归线的斜率不同,不存在共同的b值。对试验进行统计控制为了提高试验的精确性和准确性,对处理以外的一切条件都需要采取有效措施严加控制,使它们在各处
2、理间尽量一致,这叫试验控制。但在有些情况下,即使作出很大努力也难以使试验控制达到预期目的。例如:研究几种配合饲料对猪的增重效果,希望试验仔猪的初始重相同,因为仔猪的初始重不同,将影响到猪的增重。经研究发现:增重与初始重之间存在线性回归关系。但是,在实际试验中很难满足试验仔猪初始重相同这一要求。这时可利用仔猪的初始重(记为x)与其增重(记为y)的回归关系,将仔猪增重都矫正为初始重相同时的增重,于是初始重不同对仔猪增重的影响就消除了。由于矫正后的增重是应用统计方法将初始重控制一致而得到的,故叫统计控制。统计
3、控制是试验控制的一种辅助手段。若y的变异主要由x的不同造成(处理没有显著效应),则各矫正后的间将没有显著差异(但原y间的差异可能是显著的)。若y的变异除掉x不同的影响外,尚存在不同处理的显著效应,则可期望各间将有显著差异(但原y间差异可能是不显著的)。此外,矫正后的和原y的大小次序也常不一致。所以,处理平均数的回归矫正和矫正平均数的显著性检验,能够提高试验的准确性和精确性,从而更真实地反映试验实际。这种将回归分析与方差分析结合在一起,对试验数据进行分析的方法,叫做协方差分析(analysisofcova
4、riance)。二、估计协方差组分在前面曾介绍过表示两个相关变量线性相关性质与程度的相关系数的计算公式:若将公式右端的分子分母同除以自由度(n-1),得其中是x的均方MSx,它是x的方差的无偏估计量;是y的均方MSy,它是y的方差的无偏估计量;称为x与y的平均的离均差的乘积和,简称均积,记为MPxy,即(10-2)与均积相应的总体参数叫协方差(covariance),记为COV(x,y)或。统计学证明了,均积MPxy是总体协方差COV(x,y)的无偏估计量,即EMPxy=COV(x,y)。于是,样本相关
5、系数r可用均方MSx、MSy,均积MPxy表示为:(10-3)相应的总体相关系数ρ可用x与y的总体标准差、,总体协方差COV(x,y)或表示如下:(10-4)均积与均方具有相似的形式,也有相似的性质。在方差分析中,一个变量的总平方和与自由度可按变异来源进行剖分,从而求得相应的均方。统计学已证明:两个变量的总乘积和与自由度也可按变异来源进行剖分而获得相应的均积。这种把两个变量的总乘积和与自由度按变异来源进行剖分并获得获得相应均积的方法亦称为协方差分析。在随机模型的方差分析中,根据均方MS和期望均方EMS的
6、关系,可以得到不同变异来源的方差组分的估计值。同样,在随机模型的协方差分析中,根据均积MP和期望均积EMP的关系,可得到不同变异来源的协方差组分的估计值。有了这些估计值,就可进行相应的总体相关分析。这些分析在遗传、育种和生态、环保的研究上是很有用处的。由于篇幅限制,本章只介绍对试验进行统控制的协方差分析。第二节单因素试验资料的协方差分析设有k个处理、n次重复的双变量试验资料,每处理组内皆有n对观测值x、y,则该资料为具kn对x、y观测值的单向分组资料,其数据一般模式如表10—1所示。表10—1kn对观测
7、值x、y的单向分组资料的一般形式表10—1的x和y变量的自由度和平方和的剖分参见单因素试验资料的方差分析方法一节。其乘积和的剖分则为:总变异的乘积和SPT是xji与和yji与的离均差乘积之和,即:(10-5)=kn-1其中,有了上述SP和df,再加上x和y的相应SS,就可进行协方差分析。例10.1为研究A、B、C三种肥料对于苹果的增产效果,选了24株同龄的苹果树,第一年记下各树的产量(X),第二年将每种肥料随机施于8株苹果树上,再记下其产量。得结果于如下表,试作分析。肥料观察值Ti(X),Ti(Y)xi
8、,yiAXij475853464956544440750.875Yij546663515666615046758.375BXij525364585961636647659.5Yij545367626263646949461.75CXij444846505957585341551.875Yij525854617064696649461.75129854.083145560.625变异来源dfSSMSF肥料间260.7530.375<1肥料内2
此文档下载收益归作者所有