资源描述:
《中考压轴二次函数类型(湖南2011真题).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考压轴函数类型1、(2011•衡阳)已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形.2、(2011•衡阳)如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图
2、像交与点C和点D(-1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数;(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.3.(湖南邵阳12分)如图所示,在平面直角坐标系O中,已知点A(-,0),点C(0,3),点B是轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.(1)求∠ACB的度数;(2)已知抛物线经过A、B两点,求抛物线的解析式;(3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说
3、明理由.4.(本题20分)(湖南湘西,25,20分)如图.抛物线与x轴相交于点A和点B,与y轴交于点C.(1)求点A、点B和点C的坐标.(2)求直线AC的解析式.(3)设点M是第二象限内抛物线上的一点,且=6,求点M的坐标.(4)若点P在线段BA上以每秒1个单位长度的速度从A运动(不与B,A重合),同时,点Q在射线AC上以每秒2个单位长度的速度从A向C运动.设运动的时间为t秒,请求出△APQ的面积S与t的函数关系式,并求出当t为何值时,△APQ的面积最大,最大面积是多少?24.(2011湖南永州,24,10分)如图,已知二次函数的图象经过A(,)
4、,B(0,7)两点.⑴求该抛物线的解析式及对称轴;⑵当为何值时,?⑶在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正(第24题)方形时,求C点的坐标.25、(本题12分)如图,抛物线经过点A(—4,0)、B(—2,2),连接OB、AB,(1)求该抛物线的解析式.(2)求证:△OAB是等腰直角三角形.(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.(4)在抛物线上是否存在这样的点M,使得四边形A
5、BOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由.24.(本小题10分)如图11,已知二次函数y=-x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)-x1x2=10.(1)求此二次函数的解析式.(2)写出B,C两点的坐标及抛物线顶点M的坐标;(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值
6、;如果没有,请说明理由.26.如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为.(为常数)(1)求经过O、P、B三点的抛物线的解析式.(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变。(3)当P移动到时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标.26.如图11,已知抛物线过点A(0,6),B(2,0),C(7,)。(1)求抛物线的解析式;(2)若D是抛物线的顶点,E是抛物线
7、的对称轴与直线AC的交点,F与E关羽D对称,求证:∠CFE=∠AFE;(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由。[来源:Z,xx,k.Com][来源:Zxxk.Com]24、在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E.(1)求证:AE•AO=BF•BO;(2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式;(3)是
8、否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长:若不存在,请说明理由.25.(本题满分10