二次函数中考压轴题

二次函数中考压轴题

ID:42299092

大小:465.50 KB

页数:12页

时间:2019-09-12

二次函数中考压轴题_第1页
二次函数中考压轴题_第2页
二次函数中考压轴题_第3页
二次函数中考压轴题_第4页
二次函数中考压轴题_第5页
资源描述:

《二次函数中考压轴题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二次函数与图像1、如图,在平面直角坐标系中,开口向上的抛物线与轴交于两点,为抛物线的顶点,为坐标原点.若的长分别是方程的两根,且(1)求抛物线对应的二次函数解析式;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,过点任作直线交线段于点求到直线的距离分别为,试求的最大值.联考·数学试卷·第12页(共12页)2、如图所示,已知抛物线与轴交于A、B两点,与轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点

2、的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.ECByPA联考·数学试卷·第12页(共12页)3、已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C。如果是方程的两个根(),且△ABC的面积为。(1)求此抛物线的解析式;(2)求直线AC和BC的解析式;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由。联考·数学试卷·第12页(共12页

3、)4.如图,抛物线y=–x2+bx+c与x轴分别相交于点A(–2,0)、B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由。联考·数学试卷·第12页(共12页)5、如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左

4、侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.联考·数学试卷·第12页(共12页)6、如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线

5、分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.联考·数学试卷·第12页(共12页)二次函数与图像答案解:(1)解方程得,而

6、则点的坐标为,点的坐标为过点作轴于则为的中点.的坐标为又因为的坐标为令抛物线对应的二次函数解析式为抛物线过点则得故抛物线对应的二次函数解析式为(或写成)(2)又令点的坐标为则有点在抛物线上,化简得解得(舍去).故点的坐标为(3)由(2)知而联考·数学试卷·第12页(共12页)过作即此时的最大值为图1ECByPA2、解:(1)令,得解得令,得∴ABC(2)∵OA=OB=OC=∴BAC=ACO=BCO=∵AP∥CB,∴PAB=过点P作PE轴于E,则APE为等腰直角三角形,令OE=,则PE=∴P∵点P在抛物线上∴GM图2CByPA解得,(不合题意,舍去)∴

7、PE=∴四边形ACBP的面积=AB•OC+AB•PE=(3)假设存在∵PAB=BAC=∴PAAC∵MG轴于点G,∴MGA=PAC=在Rt△AOC中,OA=OC=∴AC=联考·数学试卷·第12页(共12页)在Rt△PAE中,AE=PE=∴AP=设M点的横坐标为,则M①点M在轴左侧时,则(ⅰ)当AMGPCA时,有=GM图3CByPA∵AG=,MG=即解得(舍去)(舍去)(ⅱ)当MAGPCA时有=即解得:(舍去)∴M②点M在轴右侧时,则(ⅰ)当AMGPCA时有=∵AG=,MG=∴解得(舍去)∴M(ⅱ)当MAGPCA时有=即解得:(舍去)∴M∴存在点M,使以

8、A、M、G三点为顶点的三角形与PCA相似M点的坐标为,,3、解:(1)解方程,得联考·数学试卷·第12页(共

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。